
École doctorale Sciences Pour l’Ingénieur

T H È S E
présentée en vue d’obtenir le grade de

Docteur, spécialité Informatique
par

Boris Baldassari

Mining Software Engineering Data
for Useful Knowledge

preparée dans l’équipe-projet SequeL commune

Soutenue publiquement le 1er Juillet 2014 devant le jury composé de :

Philippe Preux, Professeur des universités - Université de Lille 3 - Directeur
Benoit Baudry, Chargé de recherche INRIA - INRIA Rennes - Rapporteur
Laurence Duchien, Professeur des universités - Université de Lille 1 - Examinateur
Flavien Huynh, Ingénieur Docteur - Squoring Technologies - Examinateur
Pascale Kuntz, Professeur des universités - Polytech’ Nantes - Rapporteur
Martin Monperrus, Maître de conférences - Université de Lille 1 - Examinateur

2

Preface

Maisqual is a recursive acronym standing for “Maisqual Automagically Improves Software
QUALity”. It may sound naive or pedantic at first sight, but it clearly stated at one
time the expectations of Maisqual. The primary idea for the Maisqual project was to
investigate the application of data mining methods to practical concerns of software quality
engineering and assessment. This includes the development of innovative techniques for
the Squore product, and also the verification of some common myths and beliefs about
software engineering. It also proposes new tools and methods to extract useful information
from software data.

The Maisqual project is deeply rooted in empirical software engineering and heavily
relies on the experience gathered during years of practice and consulting with the industry.
In order to apply the data mining component, we had to widen our knowledge of statistics
by reading student manuels and reference books, experimenting with formulae and verifying
the results.

As a bridge between two distinct disciplines, we had to pay great attention to the
communication of ideas and results between practitioners of both fields. Most of Maisqual’s
users have a software engineering background and one of the requirements of the project
was to help them to grasp the benefits of the investigated data mining tools. We intensively
used analogies, pictures and common sense in order to explain concepts and to help people
map ideas to notions with which they are familiar.

We decided to formulate our different lines of enquiry into projects and established a
structure to complete them. Requirements were refined to be more effective, more precise
and more practical. From the initial intent we designed a framework and a method to
address the various objectives of our search. This enabled us to setup a secure foundation
for the establishment of specific tasks, which gave birth to the Squore Labs. Squore
Labs are clearly-defined projects addressing major subjects with pragmatic results and
implementations.

This report retraces the evolution of the Maisqual project from the discovery of new
statistical methods to their implementation in practical applications. We tried to make it
useful, practical and not too boring.

1

Acknowledgements

This project has been a huge and long investment, which would never have been possible
without many people. First of all, I would like to thank Squoring Technologies for
funding this long-running project, and Philippe Preux from INRIA Lille, who was a
faithful director. Philippe kept me up on the rails, orienting research in safe directions
and always watching the compass and range of sight.

I would like to thank my dissertation committee members, Benoit Baudry, Laurence
Duchien, Flavien Huynh, Pascale Kuntz, and Martin Monperrus, for taking interest in
my research and accepting to examine my work. Special thanks go to Pascale Kuntz and
Benoit Baudry, for their thorough reviews and insightful comments.

Also, I’ll be eternally grateful to all the people that supported me, and took care of
me, when I was working on Maisqual and during the many adventures that happened
during these three years: family, friends, neighbours, those who left (Tanguy, Mélodie)
and those who are still there. Yakacémé, the dutch barge I’m living on and working in,
was a safe and dependable home and shelter. Special thanks go to Cassandra Tchen, who
was a heartful coach, bringing sound advice and reviews, and helped a lot correcting and
enhancing the English prose.

2

Contents

Preface 1

1 Introduction 13
1.1 Context of the project . 13

1.1.1 Early history of Maisqual . 13
1.1.2 About INRIA Lille and SequeL 14
1.1.3 About Squoring Technologies 14

1.2 Project timeline . 15
1.3 Expected outputs . 16

1.3.1 Squore Labs . 16
1.3.2 Communication . 16
1.3.3 Publications . 17

1.4 About this document . 18
1.5 Summary . 20

I State of the art 21

2 Software Engineering 23
2.1 The art of building software . 24

2.1.1 Development processes . 24
2.1.2 Development practices . 25

2.2 Software measurement . 27
2.2.1 The art of measurement . 27
2.2.2 Technical debt . 30

2.3 Quality in software engineering . 31
2.3.1 A few words about quality . 31
2.3.2 Garvin’s perspectives on quality . 31
2.3.3 Shewhart . 32
2.3.4 Crosby . 32
2.3.5 Feigenbaum . 33
2.3.6 Deming . 33
2.3.7 Juran . 33

3

2.4 Quality Models in Software Engineering 34
2.4.1 A few words about quality models 34
2.4.2 Product-oriented models . 35
2.4.3 Process-oriented models . 40
2.4.4 FLOSS models . 42

2.5 Summary . 43

3 Data mining 45
3.1 Exploratory analysis . 45

3.1.1 Basic statistic tools . 45
3.1.2 Scatterplots . 46

3.2 Principal Component Analysis . 47
3.3 Clustering . 49

3.3.1 K-means clustering . 50
3.3.2 Hierarchical clustering . 50
3.3.3 dbscan clustering . 52

3.4 Outliers detection . 53
3.4.1 What is an outlier? . 53
3.4.2 Boxplot . 54
3.4.3 Local Outlier Factor . 55
3.4.4 Clustering-based techniques . 55

3.5 Regression analysis . 56
3.6 Time series . 58

3.6.1 Seasonal-trend decomposition . 58
3.6.2 Time series modeling . 58
3.6.3 Time series clustering . 59
3.6.4 Outliers detection in time series 59

3.7 Distribution of measures . 60
3.7.1 The Pareto distribution . 61
3.7.2 The Weibull distribution . 62

3.8 Summary . 62

II The Maisqual project 65

4 Foundations 69
4.1 Understanding the problem . 69

4.1.1 Where to begin? . 69
4.1.2 About literate data analysis . 70

4.2 Version analysis . 71
4.2.1 Simple summary . 71
4.2.2 Distribution of variables . 72
4.2.3 Outliers detection . 72

4

4.2.4 Regression analysis . 73
4.2.5 Principal Component Analysis . 74
4.2.6 Clustering . 75
4.2.7 Survival analysis . 77
4.2.8 Specific concerns . 78

4.3 Evolution analysis . 79
4.3.1 Evolution of metrics . 80
4.3.2 Autocorrelation . 80
4.3.3 Moving average & loess . 82
4.3.4 Time series decomposition . 83
4.3.5 Time series forecasting . 83
4.3.6 Conditional execution & factoids 85

4.4 Primary lessons . 86
4.4.1 Data quality and mining algorithms 86
4.4.2 Volume of data . 86
4.4.3 About scientific software . 87
4.4.4 Check data . 88

4.5 Summary & Roadmap . 89

5 First stones: building the project 91
5.1 Topology of a software project . 91

5.1.1 The big picture . 91
5.1.2 Artefact Types . 92
5.1.3 Source code . 94
5.1.4 Configuration management . 94
5.1.5 Change management . 95
5.1.6 Communication . 96
5.1.7 Publication . 96

5.2 An approach for data mining . 97
5.2.1 Declare the intent . 97
5.2.2 Identify quality attributes . 98
5.2.3 Identify available metrics . 98
5.2.4 Implementation . 99
5.2.5 Presentation of results . 99

5.3 Implementation . 99
5.3.1 Selected tools . 99
5.3.2 Data retrieval . 101
5.3.3 Data analysis . 103
5.3.4 Automation . 103

5.4 Summary . 104

5

6 Generating the data sets 105
6.1 Defining metrics . 106

6.1.1 About metrics . 106
6.1.2 Code metrics . 107

Artefact counting metrics . 107
Line counting metrics . 107
Control flow complexity metrics 110
Halstead metrics . 111
Rules-oriented measures . 112
Differential measures . 112
Object-oriented measures . 112

6.1.3 Software Configuration Management metrics 113
6.1.4 Communication metrics . 114

6.2 Defining rules and practices . 115
6.2.1 About rules . 115
6.2.2 Squore . 116
6.2.3 Checkstyle . 117
6.2.4 PMD . 118

6.3 Projects . 119
6.3.1 Apache Ant . 120
6.3.2 Apache Httpd . 121
6.3.3 Apache JMeter . 122
6.3.4 Apache Subversion . 122

6.4 Summary . 123

III Squore Labs 125

7 Working with the Eclipse foundation 127
7.1 The Eclipse Foundation . 128
7.2 Declaration of intent . 128
7.3 Quality requirements . 129
7.4 Metrics identification . 130
7.5 From metrics to quality attributes . 131
7.6 Results . 132
7.7 Summary . 134

8 Outliers detection 137
8.1 Requirements: what are we looking for? 137
8.2 Statistical methods . 138

8.2.1 Simple tail-cutting . 138
8.2.2 Boxplots . 139
8.2.3 Clustering . 140

6

8.2.4 A note on metrics selection . 141
8.3 Implementation . 142

8.3.1 Knitr documents . 142
8.3.2 Integration in Squore . 144
8.3.3 R modular scripts . 145

8.4 Use cases . 145
8.4.1 Hard to read files and functions 146
8.4.2 Untestable functions . 149
8.4.3 Code cloning in functions . 152

8.5 Summary . 154

9 Clustering 157
9.1 Overview of existing techniques . 157
9.2 Automatic classification of artefacts . 159

9.2.1 Squore indicators . 159
9.2.2 Process description . 159
9.2.3 Application: the auto-calibration wizard 159

9.3 Multi-dimensional quality assessment . 162
9.4 Summary & future work . 164

10 Correlating practices and attributes of software 167
10.1 Nature of data . 167
10.2 Knitr investigations . 168
10.3 Results . 169
10.4 Summary & future work . 171

IV Conclusion 173

Bibliography 177

Appendices 197

Appendix A Papers and articles published 197
Monitoring Software Projects with Squore 199
Squore, une nouvelle approche pour la mesure de qualité logicielle 207
De l’ombre à la lumière : plus de visibilité sur l’Eclipse (full version) 217
De l’ombre à la lumière : plus de visibilité sur l’Eclipse (short version) 229
De l’ombre à la lumière : plus de visibilité sur l’Eclipse (poster) 233
Outliers in Software Engineering . 235
Mining Software Engineering Data . 243
Understanding software evolution: the Maisqual Ant data set 251

7

Appendix B Data sets 255
B.1 Apache Ant . 255
B.2 Apache httpd . 255
B.3 Apache JMeter . 256
B.4 Apache Subversion . 256
B.5 Versions data sets . 257

Appendix C Knitr documents 259
C.1 Squore Lab Outliers . 259
C.2 Squore Lab Clustering . 267
C.3 Squore Lab Correlations . 272

Appendix D Code samples 279
D.1 Ant > Javadoc.java > execute() . 279
D.2 Agar > sha1.c > SHA1Transform() . 284
D.3 R code for hard to read files . 285

Index 286

8

List of Figures

1.1 Timeline for the Maisqual project. 15
1.2 Homepage of the Maisqual web site. 17
1.3 Evolution of weekly visits on the Maisqual website in 2013. 17

2.1 A typical waterfall development model. 25
2.2 A typical iterative development model. 25
2.3 The Goal-Question-Metric approach. 29
2.4 Technical debt landscape [117]. 30
2.5 McCall’s quality model. 36
2.6 Boehm’s quality model. 37
2.7 ISO/IEC 9126 quality model. 38
2.8 ISO/IEC 250xx quality model. 39
2.9 The Capability Maturity Model Integration. 41

3.1 Scatterplots of some file metrics for Ant 46
3.2 Principal Component Analysis for three metrics. 47
3.3 Principal Component Analysis for Ant 1.8.1 file metrics. 48
3.4 Hierarchical Clustering dendogram for Ant 1.7.0 files. 52
3.5 Examples of outliers on a few data sets. 53
3.6 Boxplots of some common metrics for Ant 1.8.1, without and with outliers. 55
3.7 Linear regression examples . 57
3.8 Major approaches for time series clustering [125]. 60
3.9 Major approaches for outliers detection in time series [76]. 60
3.10 Normal and exponential distribution function examples. 61
3.11 Distribution of prerelease faults in Eclipse 2.1 [198]. 62

4.1 Scatterplots of common metrics for JMeter 2007-01-01. 72
4.2 Examples of distribution of metrics for Ant 1.7. 73
4.2 Combinations of boxplots outliers for Ant 1.7. 73
4.3 Linear regression analysis for Ant 2007-01-01 file metrics. 74
4.4 Hierarchical clustering of file metrics for Ant 1.7 – 5 clusters. 76
4.5 K-means clustering of file metrics for Ant 1.7 – 5 clusters. 77
4.5 First, second and third order regression analysis for Ant 1.7. 79
4.6 Metrics evolution for Ant: sloc and scm_committers. 80

9

4.7 Univariate time-series autocorrelation on vg, sloc and scm_fixes for Ant. 81
4.8 Multivariate time-series autocorrelation on vg, sloc for Ant. 81
4.9 Moving average and loess on sloc, lc, scm_committers and scm_fixes

for Ant 1.7. 82
4.10 Time series forecasting for Subversion and JMeter. 84
4.11 Synopsis of the Maisqual roadmap. 89

5.1 Software repositories and examples of metrics extracted. 92
5.2 Different artefacts models for different uses. 93
5.3 Mapping of bug tracking processes. 95
5.4 From quality definition to repository metrics. 97
5.5 Validation of data in the Squore dashboard. 101
5.6 Data retrieval process. 102
5.7 Implementation of the retrieval process in Jenkins. 104

6.0 Control flow examples . 111
6.1 Ant mailing list activity. 120
6.2 History of Apache httpd usage on the Web. 121

7.1 Proposed Eclipse quality model. 129
7.2 Proposed Eclipse quality model: Product. 130
7.3 Proposed Eclipse quality model: Process. 130
7.4 Proposed Eclipse quality model: Community. 131
7.5 Examples of results for Polarsys. 133
7.6 Examples of results for Polarsys. 134

8.1 Combined univariate boxplot outliers on metrics for Ant 1.7: sloc, vg
(left) and sloc, vg, ncc (right). 140

8.2 Outliers in clusters: different sets of metrics select different outliers. . . . 142
8.2 Modifications in the architecture of Squore for outliers detection. 144
8.3 Hard To Read files and functions with our outliers detection method. . . 148
8.4 Hard To Read files with injected outliers. 149
8.5 Untestable functions with Squore’s action items and with our outliers

detection method. 151
8.6 Code cloning in functions with Squore’s action items and with our outliers

detection method. 154

9.1 Examples of univariate classification of files with k-means and Squore. . . 161
9.2 Computation of testability in Squore’s ISO9126 OO quality model. . . . 162
9.3 Examples of multivariate classification of files for Ant 1.8.0. 163

10.1 Repartition of violations by rule for Ant 1.8.0 files. 170
10.2 Synopsis of Maisqual. 175

10

List of Tables

3.1 Quick summary of common software metrics for Ant 1.8.1. 46

4.1 ARMA components optimisation for Ant evolution. 83
4.2 Number of files and size on disk for some projects. 87

6.1 Metrics artefact types. 107
6.2 Artefact types for common code metrics. 108
6.3 Artefact types for specific code metrics. 112
6.4 Artefact types for configuration management. 114
6.5 Artefact types for communication channels. 115
6.6 Major releases of Ant. 120
6.7 Summary of data sets. 123

8.1 Values of different thresholds (75%, 85%, 95% and maximum value for
metrics) for tail-cutting, with the number of outliers selected in bold. . . 139

8.2 Cardinality of clusters for hierarchical clustering for Ant 1.7 files (7 clusters).141

9.1 Auto-calibration ranges for Ant 1.8.1 file metrics. 160

11

12

Chapter 1

Introduction

This chapter presents the organisation adopted for running the Maisqual project, introduc-
ing the people and organisations involved in the project, and stating the objectives and
outputs of the work. It also gives valuable information to better understand the structure
and contents of this report, to enable one to capitalise on the knowledge and conclusions
delivered in this project.

The first section gives insights in the genesis of Maisqual, how it came to life and who
was involved in its setup. The project timeline in section 1.2 depicts the high-level phases
the project ran across, and expected outputs and requirements are documented in section
1.3. Typographic and redaction conventions used in the document are explained in section
1.4. A short summary outlines the forthcoming structure of the document in section 1.5.

1.1 Context of the project

1.1.1 Early history of Maisqual

The Maisqual project had its inception back in 2007 when I met Christophe Peron1 and we
started sharing our experiences and beliefs about software engineering. Through various
talks, seminars and industrial projects we had in common, the idea of a research work on
empirical software engineering steadily evolved.

The project would eventually become a reality in 2011 with the foundation of Squoring
Technologies, a start-up initiated by major actors of the world of software quality and
publisher of the Squore product. Patrick Artola, co-founder and CEO of Squoring
Technologies, had contacted the INRIA Lille SequeL team for a research project on data
mining and automatic learning. The new company needed work power for its beginning,
and since the project was considered as being somewhat important and time-consuming,
a compromise was found to mix product-oriented development, industrial consultancy and
research studies. A deal was signed in April 2011, with 2 days per week for the thesis

1Christophe Peron is an experienced software consultant. He was one of the founders of Verilog, has
worked for Continuous, Kalimetrix, Telelogic, and IBM, and is now Product Manager for Squoring
Technologies.

13

work and 3 days per week for Squoring Technologies. This was accepted by all parts
and would run for the next three years.

1.1.2 About INRIA Lille and SequeL

SequeL2 is an acronym for Sequential Learning ; it is a joint research project of the LIFL
(Laboratoire d’Informatique Fondamentale de Lille, Université de Lille 3), the CNRS
(Centre National de Recherche Scientifique) and the INRIA (Institut National de Recherche
en Informatique Appliquée) located in the Lille-Nord Europe research center.

The aim of SequeL is to study the resolution of sequential decision problems. For that
purpose, they study sequential learning algorithms with focus on reinforcement and bandit
learning and put an emphasis on the use of concepts and tools drawn from statistical
learning. Work ranges from the theory of learnability, to the design of efficient algorithms,
to applications; it is important to note that the team has interests and activities in both
fundamental aspects and real applications. SequeL has an important specificity that its
members originate from 3 different fields: computer science, applied mathematics, and
signal processing. Usually researchers of these fields work independently; in SequeL they
work together, and cross-fertilize.

Philippe Preux is the leader of the SequeL team working in the fields of sequential
learning and data mining3. He teaches at Université de Lille 3 and takes part in various
conferences, committees and scientific events.

1.1.3 About Squoring Technologies

Squoring Technologies4 was founded in late 2010 by a group of Software Engineering
experts, united by the same vision to provide a de facto standard platform for software
development projects in the embedded market. The company is located in Toulouse,
France, with offices in Paris and Grenoble. As for its international presence, Squoring
Technologies GmbH was founded in 2011 in Bavaria, Germany to target the German
market of embedded automotive and space software. Several distributors propose the
product on the Asian, European, and US markets.

Squoring Technologies offers product licensing, consultancy, services and training to
help organizations in deploying SQUORE into their operational environment and filling
the gap from a hard-to-implement metric-based process to team awareness and successful
decision making. Based on the strong operational background and deep knowledge
in software-related standards of its staff members, Squoring Technologies’ mission is
to improve capability, maturity and performance for its customers in their acquisition,
development and maintainance of software products.

2For more information see sequel.lille.inria.fr/.
3For more information see www.grappa.univ-lille3.fr/∼ppreux/rech/publis.php.
4More information about Squoring Technologies can be found on the company’s web site:

www.squoring.com

14

https://sequel.lille.inria.fr/
http://www.grappa.univ-lille3.fr/~ppreux/rech/publis.php
http://www.squoring.com

Its customers range from medium to large companies in different domains of activities:
aeronautics (Airbus, Rockwell-Collins, Thalès), defense (DCNS), healthcare (McKesson),
transport and automotive (Valéo, Continental, Delphi, Alstom, IEE, Magneti-Marelli),
energy (Schneider Electric), computing and contents (Bull, Sysfera, Technicolor, Infotel).

1.2 Project timeline

The chronicle of Maisqual can be roughly divided into three phases pictured in figure 1.1.
They correspond more or less to the three parts listed in this report:

 The State of the Art part investigated existing research to establish where we were
beginning from.

 Building upon this landscape, we decided on a methodological framework on which
to lay a secure base for the final objectives of the Maisqual project.

 Finally, on top of this foundation the Squore Labs projects are the very research
topics addressed by Maisqual.

Figure 1.1: Timeline for the Maisqual project.

Each of these phases had a distinct purpose; although they considerably overlap in
time, they really have been a successive progression of steps, each stage building upon the
results of the preceding one.

15

1.3 Expected outputs

1.3.1 Squore Labs

Squore Labs are projects that target practical concerns like new features for the Squore
product. They have been setup as pragmatic implementations of the primary goals of
the project, and secure the transfer of academic and research knowledge into Squoring
Technologies assets. They are time-boxed and have well-identified requirements and
deliverables.

Squore Labs address a specific software engineering concern and are usually defined
as an extension of a promising intuition unveiled by state of the art studies or experts’
observations. The following Squore Labs have been defined as the thesis’ goals:

 The Polarsys quality assessment working group, initiated by the Eclipse
foundation to address maturity concerns for industries of the critical embedded
systems market. We participated in the definition and prototyping of the solution
with the group to establish process-related measures and define a sound, literature-
backed quality model.

 Outliers detection has been introduced in Squore to highlight specific types of
artefacts like untestable files or obfuscated code. The advantage of using outliers
detection techniques is that thresholds are dynamic and do not depend on fixed
values. This makes the highlights work for many different types of software by
adapting the acceptable values according to the majority of data instead of relying
on generic conventions.

 Clustering brings automatic scales to Squore, by proposing ranges adapted to the
characteristics of projects. It enhances the capitalisation base feature of Squore
and facilitates the manual process of model calibration.

 Regression analysis of data allows to establish relationships among the metrics
and to find correlations between practices, as defined by violations to coding or
naming standards, and attributes of software. The intent is to build a body of
knowledge to validate or invalidate common beliefs about software engineering.

Squore Labs have been put in a separate part of this report to highlight the outputs
of the project.

1.3.2 Communication

The Maisqual website, which was started at the beginning of the project, contains a
comprehensive glossary of software engineering terms (422 definitions and references),
lists standards and quality models (94 entries) related to software along with links and
information, references papers and books, and publicises the outputs of the Maisqual
project: data sets, publications, analyses. Its home page is depicted on figure 1.2.

16

Figure 1.2: Homepage of the Maisqual web site.

Web usage statistics show an increasing traffic on the maisqual.squoring.com web
site. At the time of writing there is an average of 20 daily visits, as show in figure 1.3,
and it is even referenced on other web sites.

Figure 1.3: Evolution of weekly visits on the Maisqual website in 2013.

The server used for the analysis has also been publicised to show reports of some
open-source projects, most notably for Topcased, Eclipse, and GitHub.

1.3.3 Publications

Another requirement of Squoring Technologies is to have papers published in the
company’s area of knowledge so as to contribute to the global understanding and handling
of quality-related questions.

This has been done through speeches in conferences both in academic and industry
worlds, involvement in the Polarsys Eclipse Industry Working Group, and participation in
various meetings.

Papers published during the Maisqual project are listed hereafter:

 SQuORE: a new approach to software project quality measurement [11] is a presen-
tation of Squore principles, and how they can be used to assess software products
and projects. It was presented at the 24th International Conference on Software &
Systems Engineering and their Applications held in Paris in 2012. See full article in
appendix page 199.

17

 A french version of the above article was published in the Génie Logiciel quarterly:
SQuORE : une nouvelle approche de mesure de la qualité des projets logiciels [10].
See full article in appendix page 207.

 Software Quality: the Eclipse Way and Beyond [12] presents the work accomplished
with the Polarsys task force to build a quality program for Eclipse projects. It was
presented at the EclipseCon France 2013.

 De l’ombre à la lumière : plus de visibilité sur l’Eclipse [13] is another insight into
the work conducted with Polarsys, stressing the knowledge extraction process setup.
It was presented at the 14th Journées Francophones Extraction et Gestion des
Connaissances, held in Renne in January 2014. The complete article submitted
is available in appendix page 217. The poster and short article published are
respectively reproduced in appendix, pages 233 and 233.

 Outliers in Software Engineering [15] describes how we applied outliers detection
techniques to software engineering data and has been submitted to the 36th Inter-
national Conference on Software Engineering, held in Hyderabad, India, in 2014.
See full article in appendix, page 235.

 A Practitioner approach to Software Engineering Data Mining [14] details the
lessons we learned and summarises the experiences acquired when mining software
engineering data. It has been submitted to the 36th International Conference on
Software Engineering, held in Hyderabad, India, in 2014. See full article in appendix,
page 243.

 Understanding Software Evolution: the Apache Ant data set [16] describes the data
set generated for the Apache Ant open source project, with a thorough description
of the retrieval process setup and metrics gathered. It has been submitted to the
2014 Mining Software Repositories data track, held in Hyderabad, India, in 2014.
See full article in appendix, page 251.

1.4 About this document

This document has been written using Emacs and the LATEX document preparation
system. All the computations conducted for our research have been executed with R, an
open source language and environment for statistical computing and graphics. Similarly,
pictures have been generated from R scripts to ensure reproducibility.

About metrics

This document uses a lot of well-known and not-so-well-known software metrics, which
may be referenced either by their full name (e.g. Cyclomatic complexity) or mnemonic (e.g.
(vg). Most common metrics are listed in the index on page 286, and they are extensively
described in chapter 6, section 6.1 on page 106.

18

Visual information & Pictures

Some trade-offs had to be found between the quantity of information on a picture and
the size of a page: a scatterplot showing 6 different metrics will be too small and thus
unreadable on a screen, but showing only 3 metrics at a time takes two pages of plots. We
tried to find optimal compromises in our graphs; most of the pictures presented in this
report have been generated with a high resolution and rescaled to fit onto pages. One can
have a rough idea of what is displayed, and export the picture to an external file to see it
fullscreen in greater detail. These high-resolution pictures can also be zoomed in directly
in the document and give very nice graphics when viewed with a 400% scale.

Typographic conventions

Commands, file names or programming language words are typeset with a typewriter font.
Metrics are written with small caps. Paths and file names use a typewriter font. The
most common typographic conventions are listed thereafter.

Convention Style Example
Commands Typewriter We used the hclust command from the

stats [147] package.
Code Typewriter There shall be no fall through the next case in a

switch statement.
Metrics Small Caps The sloc is a common line-counting metric used

to estimate the size and the effort of a software
project.

Paths and file names Typewriter Results were temporarily stored in
/path/to/file.csv.

Places where we identified things to be further investigated, or room for improve-
ment are typeset like that:

The time series analysis is an emerging technique [91].
The data sets should be used in a time series context to
investigate impacts of practices on the project quality.

Citations are outlined this way:

“ A thinker sees his own actions as experiments and
questions–as attempts to find out something. Success
and failure are for him answers above all. ”

Friedrich Nietzsche

19

1.5 Summary

This report intends to restitute the evolution of this project, both in the development
in time and in ideas. The state of the art in part I gives a thorough vision of the
knowledge we built upon, and provides a semantic context for our research. Part II follows
the progression of ideas and steps of actions we took to setup a sound methodological
framework and to develop it into a reliable and meaningful process for our purpose. Part
III describes the practical application of our research to real-life concerns and needs, most
notably for the implementation of the developed techniques into the Squore product.
Finally, we draw conclusions and propose future directions in part IV.

20

Part I

State of the art

Learning is the beginning of wealth.
Learning is the beginning of health.
Learning is the beginning of spirituality.
Searching and learning is where the
miracle process all begins.

Jim Rohn

21

Chapter 2

Software Engineering

Simply put, software engineering can be defined as the art of building great software. At its
very beginning (60’s) software was mere craftsmanship [159]: good and bad practices were
dictated by talented gurus, and solutions to problems were ad hoc. Later on, practitioners
began to record and share their experiences and lessons learned, laying down the first
stones of the early industry of software. Knowledge and mechanisms have been slowly
institutionalised, with newcomers relying on their elders’ experiences and the beginning
of an emerging science with its body of knowledge and practices had begun; an example
being the arrival of design patterns in late 1980s [22, 70].

With new eyes, new tools, new techniques and methods, software research and industry
steadily gained maturity, with established procedures and paradigms. Since then software
production has gone mainstream, giving birth to a myriad of philosophies and trends
(Lean development, XP, Scrum), and permeating every aspect of daily life. The use
of software programs across all disciplines underlines the need to establish the field of
software engineering as a mature, professional and scientific engineering discipline.

Software engineering is quite old as a research topic: many fundamentals (e.g. McCabe’s
cyclomatic number [130], Boehm’s quality model [27], or Halstead’s Software Science [82])
were produced during the seventies. Resting on this sound foundation, standardisation
organisms have built glossaries and quality models, and software measurement methods
have been designed and improved. This chapter reviews the major software engineering
concepts that we used in this project: section 2.1 portrays fundamentals of software
development processes and practices; section 2.2 establishes the concerns and rules of
measurement as applied to software, section 2.3 gives a few definitions and concepts about
software quality, and section 2.4 lists some major quality models that one needs to know
when working with software quality.

23

2.1 The art of building software

2.1.1 Development processes

For small, simple programs, ad hoc practices are sufficient. As soon as the software
becomes too complex however, with many features and requirements, and hundreds of
people working on the same massive piece of code, teams need to formalise what should
be done (good practices) or not (bad practices) and generally write down the roadmap
of the building process. In this context, the development process is defined as how the
software product is developed, from its definition to its delivery and maintenance. It
usually encompasses a set of methods, tools, and practices, which may either be explicitly
formalised (e.g. in the context of industrial projects), or implicitly understood (e.g. as it
happens sometimes in community-driven projects) – see “The cathedral and the bazaar”
from E. Raymond [148].

Although there are great differences between the different lifecycle models, some steps
happen to be present in the definition of all development processes:

 Requirements: the expectations of the product have to be defined, either com-
pletely (waterfall model) or at least partially (iterative models). These can be
formalised as use cases or mere lists of capabilities.

 Design: draw sketches to answer the requirements, define the architecture and plan
development.

 Implementation: write code, tests, documentation and everything needed to
generate a working product.

 Verification: check that the initial requirements are answered with the developed
product. This is accomplished through testing before delivery, and through customer
acceptance after delivery.

 Maintenance is the evolution of the product after delivery, to include bug fixes or
new features. It represents the most expensive phase of the product lifecycle since it
can last for years.

The first established development process in the 1960s and 1970s was the waterfall
model, which has a strong focus on planning and control [20]. Every aspect of the software
has to be known up-front, then it is decomposed in smaller parts to tackle complexity
(divide-and-conquer approach). The sub-components are developed, tested, and then
re-assembled to build the full integrated system. Figure 2.1 depicts a typical waterfall
process.

The next-generation development processes use more than one iteration to build a
system, delivering at the end of each cycle a partial product with an increasing scope of
functionality. The iterative model, introduced by Basili and Turner [19], or the spiral
model presented by Boehm [26] are early examples of these. Figure 2.2 shows a typical
iterative development process.

Iterative models, which are at the heart of agile-like methods, have now become the
mainstream development model [103]. Agile methods define short iterations to deliver

24

Figure 2.1: A typical waterfall development model.

Figure 2.2: A typical iterative development model.

small increments that can be executed and tested, providing early feedback to the team
and leveraging the risks. The Agile Manifesto [21], reproduced below, summarises the
main principles of the Agile movement. Extreme Programming, Kanban, Scrum, and
Lean software development are major representatives of the agile methods.

 Individuals and interactions over Processes and tools
 Working software over Comprehensive documentation
 Customer collaboration over Contract negotiation
 Responding to change over Following a plan

2.1.2 Development practices

Practices are methods and techniques used in the elaboration of a product. Experience
defines good and bad practices, depending on the impact they have on quality attributes.
Together they form the body of knowledge that software engineering builds on its way to
maturity.

25

Product-oriented practices

A good example of practices are design patterns. They are defined by Gamma et al. [70]
as “a general reusable solution to a commonly occurring problem within a given context”.
They provide safe, experience-backed solutions for the design, coding and testing of a
system or product that improve areas like flexibility, reusability or understandability [70].
Y.G. Guéhéneuc et al. propose in [75] to use design patterns as the defining bricks of a
dedicated quality model, and link patterns to a larger variety of attributes of quality like
operability, scalability or robustness.

As for naming conventions, tools like Checkstyle allow to tailor formatting rules to check
for the project’s local customs. This however implies the use of custom configurations to
describe the specific format of the project; only a few projects provide in the configuration
management repository a configuration file for the different checks that fit the project
traditions.

Some coding convention violations may be detected as well – Squore, Checkstyle,
PMD, and Findbugs [154, 183, 8, 181] detect a few patterns that are known to be
wrong, like missing defaults in switches, racing conditions, or under-optimal constructions.
Although programming languages define a wide spectrum of possible constructions, some
of them are discouraged by usage recommendations and can be statically verified.

Process-oriented practices

Examples of process-oriented practices are milestones and reviews planning for conducting
the project. Most often these practices are informal: people will organise a meeting
through mailing lists, doodles, or phone calls, and coding conventions may be implicitly
defined or scattered through a wide variety of documents (mailing lists, wiki, code itself).
As a consequence, many process-related practices are identified through binary answers
like: “Is there a document for coding conventions?” or “Are there code reviews?”.

Hence it is not always easy to detect these practices: the variety of development
processes and tools, and the human nature of project management, make them difficult
to measure consistently. Furthermore when coming to meaningful thresholds it is difficult
to find a value that fits all projects: for agile-like methods, milestones and reviews should
take place at each sprint (which lasts only a few weeks) while they often happen only
later in the process for waterfall-like processes. Projects also often rely on different tools
or even different forges: Jenkins uses GitHub for its code base, but has its own continuous
integration server, bug tracking (JIRA) and website hosting.

From process practices to product quality

The belief that adherence to a good development process leads to an improved software
product was a long-standing open question. Dromey [53] claims this is not enough, and
advocates practitioners not to forget to “construct, refine and use adequate product quality
models [53]”. Kitchenham and Pfleeger reinforce this opinion by stating:

26

“ There is little evidence that conformance to process
standards guarantees good products. In fact, the critics
of this view suggest that process standards guarantee
only uniformity of output [. . .]. ”

B. Kitchenham and S.L. Pfleeger [111]

However, studies conducted at Motorola [56, 49] and Raytheon [80] show that there is
indeed a correlation between the maturity level of an organisation as measured by the
CMM and the quality of the resulting product. These cases show how a higher maturity
level can lead to improved error/defect density, lower error rate, lower cycle time, and
better estimation capability.

There is no silver bullet, though, and what works well in some contexts may fail or
simply be not applicable in other situations.

2.2 Software measurement

2.2.1 The art of measurement

The art of measurement is quite mature, compared to the field of software engineering.
Humans have used measures for milleniums, to count seasons, elks, big white ducks, or
land. From this rough counting practice, engineers have built upon and defined clear rules
for better measurement. Hence from a rigorous perspective, measurement is the process
by which numbers or symbols are assigned to attributes of entities in the real world in such
a way as to describe them according to clearly defined rules [62, 66].

The measurement theory clearly defines most of the terms used here; however for some
more specific aspects of software, we will rather rely on established definitions, either
borrowed from standards or recognised authors.

 Measurement is the process by which numbers or symbols are assigned to attributes
of entities in the real world in such a way as to describe them according to clearly
defined rules [62].

 As a consequence, a Measure is the variable (either number or symbol) assigned as
the result of a measurement.

 AMetric is a defined measurement method and the associated measurement scale [94].
An example of metric is the Lines Count, which is the raw number of lines of an
artefact (application, file, function) using an ordinal scale (the number of lines).

 Quality Attributes or Quality Factors are attributes of software that contribute to its
quality [158]. Examples of quality attributes include readability of code, reliability
of product, or popularity of the project.

 Quality Models organise quality attributes according to a specific hierarchy of
characteristics. Examples of quality models include those proposed by McCall [131]
and Boehm et al. [28, 27], or standards like ISO 9126 [94] or CMMi [174].

27

As for the big picture, quality models define specific aspects of software (quality
attributes) like maintainability, usability or reliability, which are decomposed in sub-
characteristics: e.g. analysability, changeability, stability, testability for maintainability.
These sub-characteristics themselves rely on a set of metrics ; there is generally a many-to-
many relationship between quality attributes and metrics: control-flow complexity has an
impact on both analysability and testability, while analysability of a software program
is commonly measured as a function of control-flow complexity and respect of coding
conventions.

The representation condition of measurement

According to Fenton, another requirement for a valid measurement system is the represen-
tation condition, which asserts that the correspondence between empirical and numerical
relations is two way [62]. As applied to the measurement system of human height it means
that: 1. If Jane is taller than Joe, then everyone knows that Jane’s measure is greater
than Joe’s. 2. If Jane’s measure is greater than Joe’s, then everyone knows that Jane is
taller than Joe.

Mathematically put, if we define the measurement representation M and suppose that
the binary relation ≺ is mapped by M to the numerical relation <. Then, formally, we
have the following instance:

x ≺ y ⇐⇒M(x) < M(y)

This is one of the most failing reasons for software metrics [62]. An example would
be to take as a representation the cyclomatic number as a measure of maintainability.
Respecting the representation condition would imply that if code A has a higher cyclomatic
number than code B, then code A is always less maintainable than code B – which is not
true, since it also depends on a variety of other parameters like coding conventions and
indentation.

The Goal-Question-Metric approach

In [20], Basili et al. review the requirements of a sound measurement system. To be
effective, the application of metrics and models in industrial environments must be:

 Focused on goals.
 Applied to all life-cycle products, processes and resources.
 Interpreted based on characterization and understanding of the organisational

context, environment and goals.

They propose a three levels model in order to build a measurement system, further
detailed in figure 2.3:

 At the conceptual level, goals are to be defined for objects of measurement (product,
process, and resources).

28

 At the operational level, questions are used to characterise the way the assessment
is going to be performed.

 At the quantitative level, a set of metric is associated to every question to answer it
in a quantitative way.

Figure 2.3: The Goal-Question-Metric approach.

This approach has proven to be useful for the consistency and relevance of systems of
measurement. It was further commented and expanded by L. Westfall [185], who proposes
12 steps to conduct a successful Goal-Question-Metric process in industrial contexts.

The Hawthorne effect

The idea behind the Hawthorne effect is that participants may, either consciously or
unconsciously, alter their behaviour because they know they are being studied, thus
undermining the experiment. The term was coined in 1950 [68] and refers to a series
of experiments conducted from 1927 to 1933 on factory workers at Western Electric’s
Hawthorne Plant. It showed that regardless of the changes made in the working conditions
(number and duration of breaks, meals during breaks, work time) productivity increased.
These changes apparently had nothing to do with the workers’ responses, but rather
with the fact they saw themselves as special, participants in an experiment, and their
inter-relationships improved. Although this study has been deeply debated [141, 99, 124]
as for its own conclusions, the influence of a measurement process on people should never
be under-estimated.

Ecological inference

Ecological inference is the concept that an empirical finding at an aggregated level (e.g.
package or file) can apply at the atomic sub-level (e.g. resp. files or functions). If this
inference does not apply, then we have the ecological fallacy. The concept of ecological
inference is borrowed from geographical and epidemiological research. It was first noticed
by Robinson as early as 1950 [152], when he observed that at an aggregated level, immigrant
status in U.S. states was positively correlated (+0.526) with educational achievement,
but at the individual level it was negatively correlated (-0.118). It was attributed to the

29

congregational tendency of human nature, but it introduced a confounding phenomenon
which jeopardised the internal validity of the study at the aggregated level.

Postnett et al. [146] discuss ecological inference in the software engineering field and
highlight the risks of metrics aggregation in software models. There are many cases in
software engineering where we want to apply ecological inference. As an example, the
cyclomatic complexity as proposed by McCabe [130] is measured at the function level,
but practitioners also often consider it at the file or application level.

2.2.2 Technical debt

The technical debt concept is a compromise on one dimension of a project (e.g. maintain-
ability) to meet an urgent demand in some other dimension (e.g. a release deadline). Every
work accomplished on the not-quite-right code counts as interest on the debt, until the
main debt is repaid through a rewrite. Martin Fowler puts it nicely in a 2009 column [67]:

“ You have a piece of functionality that you need to
add to your system. You see two ways to do it, one is
quick to do but is messy - you are sure that it will make
further changes harder in the future. The other results in
a cleaner design, but will take longer to put in place. ”

Martin Fowler

The concept is not new – it was first coined by Ward Cunningham in 1992 [43]
– but is now attracting more and more interest with the increasing concerns about
software development productivity. Many software analysis tools and methods propose a
component based on the technical debt: e.g. Squore, Sqale [122] or SonarQube. Another
strength of the technical debt lies in its practical definition: developers and stakeholders
easily understand it, both for weighing decisions and from an evaluation perspective.
Furthermore, it defines a clear roadmap to better quality.

Figure 2.4: Technical debt landscape [117].

30

Technical debt is not always bad, though: it may be worth doing changes immediately
for an upcoming release rather than missing the time-to-market slot. In these cases,
practitioners just have to manage the technical debt and keep it under control [31]. Code
technical debt (as opposed to architectural or structural, see figure 2.4) is usually based
on a few common metrics (e.g. complexity, size) and the number of non-conformities
detected in the source [117]. When comparing software products, the technical debt is
often expressed as an index by dividing its amount by the number of files or lines of code.

2.3 Quality in software engineering

2.3.1 A few words about quality

Defining quality is not only a matter of knowing who is right or close to the truth: as we
will see in this section, the plethora of different definitions show how much this concept
can evolve, depending on the domain (e.g. critical embedded systems/desktop quick
utility), the development model (e.g. open/closed source), or who is qualifying it (e.g.
developer/end-user). Nevertheless, one needs to know some of the canonical definitions to
better understand usual expectations and requirements, and to get another view on one’s
local quality context.

What is called quality is important because it really defines what the different actors of
a software project expect from the system or service delivered and what can be improved.
The definition of quality directly defines how a quality model is built.

2.3.2 Garvin’s perspectives on quality

David Garvin [71] stated five different perspectives of quality that are still relevant to
modern views on software quality:

 The transcendental perspective deals with the metaphysical aspect of quality.
In this view of quality, it is “something toward which we strive as an ideal, but may
never implement completely” [111]. It can hardly be defined, but is similar to what
a federal judge once commented about obscenity: “I know it when I see it” [103].

 The user perspective is concerned with the appropriateness of the product for a
given context of use. Whereas the transcendental view is ethereal, the user view is
more concrete, grounded in the product characteristics that meet user’s needs [111].

 The manufacturing perspective represents quality as conformance to require-
ments. This aspect of quality is stressed by standards such as ISO 9001, which
defines quality as “the degree to which a set of inherent characteristics fulfils require-
ments” (ISO/IEC 1999b). Other models like the Capability Maturity Model state
that the quality of a product is directly related to the quality of the engineering
process, thus emphasising the need for a manufacturing-like process.

 The product perspective implies that quality can be appreciated by measuring
the inherent characteristics of the product. Such an approach often leads to a

31

bottom-up approach to software quality: by measuring some attributes of the
different components composing a software product, a conclusion can be drawn as
to the quality of the end product.

 The final perspective of quality is value-based. This perspective recognises that
the different perspectives of quality may have different importance, or value, to
various stakeholders.

The manufacturing view has been the predominant view in software engineering since
the 1960s, when the US department of Defence and IBM gave birth to Software Quality
Assurance [182].

2.3.3 Shewhart

Shewhart was a physicist, engineer and statistician working for Bell laboratories in the
early 1930’s. He was the first to introduce statistical control in the manufacturing industry,
and is now recognised as the founding father of process quality control. His work has
been further commented and expanded by Edward Deming. In a book published in 1931,
Economic Control of Quality of Manufactured Product [160], Shewhart proposes a sound
foundation for quality, which is still used and referenced nowadays in the industry:

“ There are two common aspects of quality: one of
them has to do with the consideration of the quality
of a thing as an objective reality independent of the
existence of man. The other has to do with what we
think, feel or sense as a result of the objective reality. In
other words, there is a subjective side of quality. ”

Walter A. Shewhart

2.3.4 Crosby

In “Quality is free: The art of making quality certain” [42], Crosby puts the conformance
to requirements as the main characteristic of quality, mainly because it allows to more
easily define, measure and manage the concept. However, he tries to widen the scope of
requirements by including an external perspective to the traditional production perspective.

“ As follows quality must be defined as conformance
to requirements if we are to manage it. Consequently,
the non-conformance detected is the absence of quality,
quality problems become non-conformance problems,
and quality becomes definable. ”

Philip B. Crosby

In the same essay, Crosby enumerates four key points to be the foundations of a quality
system:

32

 Conformance to requirements, as opposed to goodness or elegance.
 System for causing quality is prevention, not appraisal.
 Performance standard must be Zero Defect.
 Measurement of quality is the price of non-conformance.

2.3.5 Feigenbaum

Feigenbaum is one of the originators of the Total Quality Management movement [61]. He
stresses the importance of meeting customer needs, either “stated or unstated, conscious or
merely sensed, technically operational or entirely subjective”. As such, quality is a dynamic
concept in constant change. Product and service quality is a multidimensional concept and
must be comprehensively analysed; it can be defined as “the total composite product and
service characteristics of marketing, engineering, manufacture and maintenance through
which the product and service in use will meet the expectations of the customer”.

Feigenbaum and the Total Quality Management system greatly influenced quality
management in the industry: it was a sound starting point for Hewlett-Packard’s Total
Quality Control, Motorola’s Six Sigma, or IBM’s Market Driven Quality [103].

2.3.6 Deming

Deming was an early supporter of Shewhart’s views on quality. In “Out of the crisis:
quality, productivity and competitive position” [46], he defines quality in terms of customer
satisfaction. Deming’s approach goes beyond the product characteristics and encompasses
all aspects of software production, stressing the role of management: meeting and exceeding
customer expectations should be the ultimate task of everyone within the company or
organisation.

Deming also introduces 14 points to help people understand and implement a sound
quality control process that spans from organisational advice (e.g. break down barriers
between departments, remove numerical targets) to social and philosophical considerations
(e.g. drive out fear, institute leadership) . Interestingly, agile practitioners would probably
recognise some aspects of this list which are common in modern agile processes: drive out
fear, educate people, constantly improve quality and reduce waste. . .

2.3.7 Juran

In his “Quality Control Handbook” [101], Juran proposes two definitions for quality:
1. quality consists of those product features which meet the needs of customers and
thereby provide product satisfaction; and 2. quality consists of freedom from deficiencies.
He concludes the paragraph however with a short, standardised definition of quality as
“fitness for use”:

33

“ Of all concepts in the quality function, none is so
far-reaching and vital as “fitness for use”. [...] Fitness
for use is judged as seen by the user, not by the
manufacturer, merchant, or repair shop. ”

J.M. Juran [101]

According to Juran, fitness for use is the result of some identified parameters that go
beyond the product itself:

 Quality of design: identifying and building the product or service that meets the
user’s needs. It is composed of:

1. Identification of what constitutes fitness for use to the user: quality of market
research;

2. Choice of a concept or product or service to be responsive to the identified
needs of the user; and

3. Translation of the chosen product concept into a detailed set of specifications
which, if faithfully executed, will then meet the user’s needs.

There are also some “abilities” specific to long-lived products: availability, reliability,
and maintainability.

 Quality of Conformance. The design must reflect the needs of fitness for use, and
the product must also conform to the design. The extent to which the product does
conform to the design is called “quality of conformance”.

 Field Service: following the sale, the user’s ability to secure continuity of service
depends largely on some services the organisation should provide: training, clear
and unequivocal contracts, repairing, conducting affairs with courtesy and integrity.

2.4 Quality Models in Software Engineering

2.4.1 A few words about quality models

Why do we need quality models?

Quality models help organise the different aspects of quality into an extensive and consistent
structure [45]. In some sense, they help to explicitly define implicit needs for the product
or service. By linking the quality characteristics to defined measures, one is then able to
assess the compliance of a product or project to the expectations [54, 93].

By putting words on concepts, individuals can formalise the fuzzy notion of quality
and communicate them to others [93, 45]. Since there is no single definition of quality,
it allows people to at least agree on a localised, context-safe compromise on what users
(developers, stakeholders, management..) expect from from a good product or project.
Quality models ultimately provide a structure to collaborate on a common framework for
quality assessment – which is the first step to measure, then improve quality.

34

Common critics

Quality models that propose means to evaluate software quality from measures generally
rely on numerical or ratio scales. But in the end, appreciation of quality is human-judged,
and humans often use non-numeric scales [62, 105]. There have been various attempt
to integrate new areas of knowledge: quality models target different types of quality
measurement and factors, from community-related characteristics in FLOSS models to
user satisfaction surveys. Khosravi et al. [110] propose to introduce different categories of
inputs to catch information present in artefacts that go beyond source code.

A single quality model cannot rule all software development situations. The variety of
software development projects poses a big threat on the pertinence of universally defined
attributes of quality [110]. Small, geographically localised projects (like a ticketing system
for a small shop) have different quality requirements than large, distributed, critical
banking systems. Links between quality attributes and metrics are jeopardised by many
factors, both dependent on the type of project and on its environment [105]. Some metrics
are not available in specific contexts (e.g. because of the tools or the development process
used) or have a different meaning. This in turn induces different thresholds values of
metrics for what is fair, poor or forbidden.

Standard requirements evolve. Software, for industry in the 80’s, had different con-
straints than we have nowadays: processing time was a lot more expensive, and some
conceptions were still associated to hardware constraints. The requirements of quality
have thus greatly evolved, and some characteristics of older quality models are no longer
relevant. Still, one needs to know the different approaches for both the referencing part
(terminology, semantics, structure) and the model completeness (there is no single quality
model with all available characteristics).

2.4.2 Product-oriented models

McCall

The McCall model, also known as the General Electrics Model, was published by Jim
McCall et al. in 1977 [131]. It can be seen as an attempt to bridge the gap between users
and developers by focusing on a number of quality factors that reflect both the user’s
views and the developer’s priorities.

McCall identifies 3 areas of software quality:

 Product Operation refers to the product’s ability to be quickly understood, efficiently
operated and capable of providing the results required by the user. It includes
correctness, reliability, efficiency, integrity, and usability.

 Product Revision is the ability to undergo changes, including error correction and
system adaptation. It includes maintainability, flexibility, and testability.

 Product Transition is the adaptability to new environments, e.g. distributed pro-
cessing or rapidly changing hardware. It includes portability, reusability, and
interoperability.

35

Figure 2.5: McCall’s quality model.

Each quality factor is defined as a linear combination of metrics:

Fa = c1.m1 + c2.m2 + . . .+ cn.mn

McCall defines 21 metrics, from auditability (the ease with which conformance to
standards can be checked) to data commonalities (use of standard data structures and
types) or instrumentation (the degree to which a program monitors its own operations and
identifies errors that do occur). Unfortunately, many of these metrics can only be defined
subjectively [111]: an example of a question, corresponding to the Self-documentation
metric is: “is all documentation structured and written clearly and simply such that
procedures, functions, algorithms, and so forth can easily be understood?".

Boehm

Barry W. Boehm proposed in a 1976 article on the “Quantitative evaluation of software
characteristics” [28] a new model targeted at product quality. It discusses the organisation
of quality characteristics for different contexts and proposes an iterative approach to link
them to metrics. One of the strong points of Boehm is the pragmatic usability of the
model and its associated method: “one is generally far more interested in where and how
rather than how often the product is deficient.”

The model defines 7 quality factors and 15 sub-characteristics that together represent
the qualities expected from a software system:

 Portability: it can be operated easily and well on computer configurations other
than its current one.

 Reliability: it can be expected to perform its intended functions satisfactorily.
 Efficiency: it fulfils its purpose without waste of resource.
 Usability: it is reliable, efficient and human-engineered.
 Testability: it facilitates the establishment of verification criteria and supports

evaluation of its performance.

36

Figure 2.6: Boehm’s quality model.

 Understandability: its purpose is clear to the inspector.
 Modifiability: it facilitates the incorporation of changes, once the nature of the

desired change has been determined.

FURPS/FURPS+

The FURPS model was originally presented by Robert Grady and extended by Rational
Software into FURPS+3. It is basically structured in the same manner as Boehm’s and
McCall’s models. FURPS is an acronym which stands for:

 Functionality – which may include feature sets, capabilities and security.
 Usability – which may include human factors, aesthetics, consistency in the user

interface, online and context-sensitive help, wizards and agents, user documentation,
and training materials.

 Reliability – which may include frequency and severity of failure, recoverability,
predictability, accuracy, and mean time between failure.

 Performance – imposes conditions on functional requirements such as speed, efficiency,
availability, accuracy, throughput, response time, recovery time, and resource usage.

 Supportability – which may include testability, extensibility, adaptability, main-
tainability, compatibility, configurability, serviceability, install ability, localisability
(internationalisation).

37

ISO/IEC 9126

The ISO/IEC 9126 standard is probably the most widespread quality framework in use
nowadays in the industry. It defines an extensive glossary of terms for software concepts
(process, product, quality characteristics, measurement, etc.), a recognised framework for
product quality assessment and it even proposes links to some common metrics identified
as being related to the quality attributes. According to Deissenboeck [45] topology, the
ISO/IEC 9126 standard is a definition model. Metrics furnished aren’t pragmatic enough
however to raise it to an assessment model.

Figure 2.7: ISO/IEC 9126 quality model.

The standard makes an interesting difference between the various factors of quality.
Internal quality is defined by the quality requirements from an internal view, i.e. indepen-
dently from a usage scenario, and can be directly measured on the code. External quality
is measured and evaluated when the software is executed in a given context, i.e. typically
during testing. Finally, quality in use is the user’s perspective on the software product
when it is used in a specific environment and a specific context of use. It measures the
extent to which users can achieve their goals in a particular environment, rather than
measuring the properties of the software itself. Quality in use and external quality may
have some metrics in common.

The first version of the model, ISO/IEC 9126:1991, has been replaced by two related
standards: ISO/IEC 9126:2001 (Product quality) and ISO/IEC 14598 (Product evaluation).
These in turn have been superseded by the ISO 250xx SQuaRE series of standards.

ISO/IEC 250xx SQuaRE

The SQuaRE series of standards was initiated in 2005 as the intended successor of ISO
9126. Most of its structure is modelled after its ancestor, with some enhancements on the
scope (computer systems are now included) and a few changes on the sub-characteristics

38

(eight product quality characteristics instead of ISO 9126’s six).

Figure 2.8: ISO/IEC 250xx quality model.

The series spans from ISO/IEC 25000 to 25099 and is decomposed in a four sub-series
of standards:

 Quality management. ISO/IEC 2500n presents and describes the SQuaRE series of
standards, giving advice on how to read and use it. It can be seen as an introduction
to the remaining documents.

 Quality model. ISO/IEC 25010 defines the quality in use and product quality models.
ISO/IEC 25012 defines a model for data quality, complementary to the above models.
It provides help to define software and system requirements, the design and testing
objectives, and the quality control criteria.

 Quality measurement. ISO/IEC 2502n provides a measurement reference model and
a guide for measuring the quality characteristics defined in ISO/IEC 25010, and sets
requirements for the selection and construction of quality measures.

 Quality requirement. ISO/IEC 2503n provides recommendations for quality require-
ments, and guidance for the processes used to define and analyse quality requirements.
It is intended as a method to use the quality model defined in ISO/IEC 25010.

 Quality evaluation. ISO/IEC 2504n revises the ISO/IEC 14598-1 standard for
the evaluation of software product quality and establishes the relationship of the
evaluation reference model to the other SQuaRE documents.

Although some parts are already published, the standard is still an ongoing work:
available slots in the 25000-25099 range should be filled with upcoming complements, like
25050 for COTS (Components Off The Shelf) evaluation.

39

SQALE

SQALE (Software Quality Assessment based on Lifecycle Expectations) is a method to
support the evaluation of a software application source code. Its authors intended it as an
analysis model compliant with the representation condition of quality measurement [123].
It is a generic method, independent of the language and source code analysis tools, and
relies on the ISO 9126 for the quality factors structure. Its main advantage over older
quality models is it proposes pragmatic metrics to quantitatively compute quality from
lower levels (code) to upper quality factors. It uses some concepts borrowed from the
technical debt [122] and is gaining some interest from the industry in recent years.

2.4.3 Process-oriented models

The Quality Management Maturity Grid

The Quality Management Maturity Grid (QMMG) was introduced by P. Crosby in his
book “Quality is free” [42] to assess the degree of maturity of organisations and processes.
Although it has largely been superseded by other models like CMM (which recognises
Crosby’s work as a successor), it was an early precursor that laid down the foundation of
all next-generation maturity assessment models. The model defines categories of measures
(e.g. management understanding and attitude, quality organisation status or problem
handling), and five levels of maturity:

 Uncertainty : We don’t know why we have problems with quality.
 Awakening : Why do we always have problems with quality?
 Enlightenment : We are identifying and resolving our problems.
 Wisdom: Defect prevention is a routine part of our operation.
 Certainty : We know why we do not have problems with quality.

The Capability Maturity Model

In the 1980’s, several US military projects involving software subcontractors ran over-time,
over-budget or even failed at an unacceptable rate. In an effort to determine why this
was occurring, the United States Air Force funded a study at Carnegie Mellon’s Software
Engineering Institute. This project eventually gave birth to version 1.1 [142] of the
Capability Maturity Model in 1993. Critics of the model, most of them revolving around
the lack of integration between the different processes in the organisation, led to the
development and first publication of the CMMi in 2002 [173]. The latest version of the
CMMi is the 1.3 [174], published in 2010.

The CMMi defines two complementary representations for processes maturity evalua-
tion. The staged view attaches a set of activities, known as process areas, to each level
of maturity of the organisation. The continuous representation uses capability levels to
characterise the state of the organisation’s processes relative to individual areas. The
CMMi is declined in 3 areas of interest: development, services, acquisitions.

40

Figure 2.9: The Capability Maturity Model Integration.

CMMi-Development 1.3 defines five maturity levels and twenty-two process areas,
illustrated in figure 2.9. Organisation-related maturity levels are initial, managed, defined,
quantitatively managed, and optimising. Examples of process areas include causal analysis
and resolution, configuration management, requirements management, risk management,
or project planning. In the continuous representation, process areas are assessed through
the following four capability levels: incomplete, performed, managed, and defined.

The CMMi information centre has recently been moved from the SEI web site to
the CMMi Institute1, which is hosted by Carnegie Innovations, the Carnegie-controlled
technology commercialisation enterprise.

ISO 15504

The ISO 15504 standard, also known as SPICE (Software Process Improvement and
Capability dEtermination), provides a guide for performing an assessment. ISO/IEC
15504 initially was derived from process lifecycle standard ISO/IEC 12207 and from
maturity models like Bootstrap, Trillium and the CMM.

It includes the assessment process, the model for the assessment, and any tools used
in the assessment, and is decomposed in two dimensions of software quality:

 Process areas, decomposed in six categories: customer/supplier, engineering, sup-
porting, management, organisation.

1http://cmmiinstitute.com/

41

http://cmmiinstitute.com/

 Capability levels to measure the achievement of the different process attributes:
incomplete, performed, managed, established, predictable, optimising. These are
similar to CMM’s levels of maturity.

2.4.4 FLOSS models

First-generation FLOSS models

Traditional quality models ignore various aspects of software unique to FLOSS (Free/Libre
Open Source Software), most notably the importance of the community. Between 2003
and 2005 the first generation of quality assessment models emerged on the FLOSS scene.
They were:

 Open Source Maturity Model (OSMM), Capgemini, provided under a non-free
license [55].

 Open Source Maturity Model (OSMM), Navica, provided under the Academic Free
license [137].

 Qualification and Selection of Open Source Software, QSOS, provided by Atos Origin
under the GNU Free Documentation license [140].

 Open Business Readiness Rating, OpenBRR, provided by Carnegie Mellon West Cen-
tre for Open Source Investigation, sponsored by O’Reilly CodeZoo, SpikeSource, and
Intel, and made available under a Creative Commons Attribution-NonCommercial-
ShareAlike 2.5 license [184].

All models are based on a manual work, supported by evaluation forms. The most
sophisticated tool support can be found in QSOS, where the evaluation is supported by
either a stand-alone program or a Firefox plugin which enables feeding results back to the
QSOS website for others to download. Still, the data gathering and evaluation is manual.

The status in 2010 is that none of these FLOSS quality models have been widely
adopted, and few or none of them can really be considered a success yet. The OSMM
Capgemini model has a weak public presence in the open source community, the web
resources for the OSMM Navica are no longer available, and the OpenBRR community
consists of an abandoned web site that is frequently not available. The QSOS project
shows a slow growth in popularity [186], with half a dozen of papers published and many
web sites referencing it. Unlike other quality models it is still under development, with a
defined roadmap and active committers.

First-generation FLOSS models

The next generation of FLOSS quality model has learned from both traditional quality
models and first-generation FLOSS quality models, notably with a more extensive tool
support. They are:

42

 QualOSS [47] is a high-level and semi-automated methodology to benchmark the
quality of open-source software. Product, community and process are considered to
be of equal importance for the quality of a FLOSS endeavour. It can be applied to
both FLOSS products and components.

 QualiPSo Open Source Maturity Model [144], a CMM-like model for FLOSS. It
focuses on process quality and improvement, and only indirectly on the product
quality [79].

 Software Quality Observatory for Open Source Software (SQO-OSS) proposes a
quality model and a platform with quality assessment plug-ins. It comprises a core
tool with software quality assessment plug-ins and an assortment of UIs, including a
Web UI and an Eclipse plugin [157]. The SQO-OSS is being maintained, but the
quality model itself is not yet mature, and most of the focus is on the development
of the infrastructure to enable the easy development of plug-ins.

2.5 Summary

In this chapter we walked through the landscape of software engineering, identifying the
building blocks of our research. First, we quickly described major development principles,
processes and practices needed to localise where and how we can measure and act on a
software project. We defined the basis of measurement as applied to software projects,
the pitfalls that one may face when applying it in different contexts, and the experience
gathered on software measurement programs in the past decades.

We then presented a few definitions and models of quality. They provide a sound and
(experience-grown) safe foundation to build custom, context-aware quality models. This
is a mandatory step for establishing a common terminology and comprehension of the
concepts used during the project, and helps to identify concerns and issues encountered
in many different situations and in large, real-life projects. On the one hand, there are
complex but fully-featured quality models, with pragmatic links between quality attributes
and metrics and a method for their application. On the other hand, the most widespread
quality models are those which are much simpler to understand or apply, even if they
show some concerns or discrepancies.

What remains from this fish-eye view is the numerous definitions of quality for research
and practitioners: even as of today, and despite of the many references available, people do
not easily agree on it. Another difficult point is the link between the quality attributes and
the metrics that allow to measure it pragmatically because of the definition, understanding
and availability of metrics. As an example there is no common accord on the metrics
that definitely measure maintainability and comply with the representational condition of
measurement.

43

44

Chapter 3

Data mining

Data mining is the art of examining large data sources and generating a new level of
knowledge to better understand and predict a system’s behaviour. In this chapter we
review some statistical and data mining techniques, looking more specifically at how
they have been applied to software engineering challenges. As often as possible we give
practical examples extracted from the experiments we conducted.

Statistics and data mining methods had evolved on their own and were not introduced
into software-related topics until 1999 when Mendonce and Sunderhaft published a serious
survey [132] summarising the state of data mining for software engineering for the DACS
(Data and Analysis Center for Software). Since then data mining methods for software
engineering as a specific domain of interest for research have emerged, with works on
software quality predictors (Khoshgoftaar et al. [109] in 1999), test automation (M. Last
et al. [119] in 2003), software history discovery (Jensens [97] in 2004)), prediction of source
code changes (A. Ying et al. [195]), and recommenders to help developers find related
changes when modifying a file (Zimmermann [202] in 2005). The specific application of
data mining techniques to software engineering concerns is now becoming an established
field of knowledge [190, 172].

This chapter is organised as follows. We start with some basic exploratory analysis
tools in section 3.1. We then review the main techniques we investigated for our purpose:
clustering in section 3.3, outliers detection in section 3.4, regression analysis in section
3.5, time series analysis in section 3.6, and distribution functions in section 3.7. Section
3.8 summarises what we learned.

3.1 Exploratory analysis

3.1.1 Basic statistic tools

The most basic exploration technique is a quick statistical summary of data: minimum,
maximum, median, mean, variance of attributes. Table 3.1 shows an example of a summary
for a few metrics gathered on Ant 1.8.1. This allows us to get some important information
on the general shape of metrics, and to quickly identify and dismiss erroneous metrics

45

(e.g. if min and max are equal).

Table 3.1: Quick summary of common software metrics for Ant 1.8.1.

Metric Min 1st Qu. Median Mean 3rd Qu. Max Var
cft 0 4 16 37.43 41 669 3960.21
clas 1 1 1 1.42 1 14 1.65
comr 5.14 39.2 50 51.13 64 92.86 334.22
sloc 2 22 56 107.5 121 1617 25 222.24
vg 0 4 11 22.7 25 379 1344.14
scm_commits 0 4 12 22.11 30 302 962.92
scm_committers 0 1 2 3.44 5 19 10.97
scm_fixes 0 0 1 1.54 2 39 8.03

3.1.2 Scatterplots

Scatterplots are very useful to visually identify relationships in a multivariate dataset. As
an example, figure 3.1 shows a scatterplot of some common file metrics for the Ant project:
sloc, vg, and scm_commits_total. We can immediately say that the sloc and vg
metrics seem to be somewhat correlated: they follow a rough line with little variance.

Figure 3.1: Scatterplots of some file metrics for Ant

Cook and Swayne [39] use scatterplots to show specific characteristics of data by

46

visually differencing some elements. It adds another dimension of information to the plot:
in figure 3.1, files that have been heavily modified (more than 50, 75 and 100 commits)
are plotted with resp. orange, light red and dark red crosses. The most unstable files
happen at 2/3 of the metric’s range, and only a few of the bigger (with a high value of
sloc) files are heavily modified.

3.2 Principal Component Analysis

The idea of principal component analysis (PCA) is to find a small number of linear
combinations of the variables so as to capture most of the variation in the data as a
whole. With a large number of variables it may be easier to consider a small number of
combinations of the original data rather than the entire data set.

In other words, principal component analysis finds a set of orthogonal standardised
linear combinations which together explain all of the variation in the original data. There
are potentially as many principal components as there are variables, but typically it is the
first few that explain important amounts of the total variation.

Figure 3.2: Principal Component Analysis for three metrics.

47

Figure 3.2 illustrates the application of principal component analysis on a set of three
variables: sloc, vg, scm_commits_total for the Ant 1.8.0 files. We know that
sloc and vg are correlated, i.e. they carry a similar load of information and tend to
vary together. The first picture (upper left) shows the decreasing relative importance
of each principal component as given by its variance. In this case the third component
is insignificant compared to the variance of the first two, which means that most of the
variations in the three variables can be summarised with only two of them. The three next
plots show the projection of the metrics on the three components: sloc and vg overlap
on the first plot since they carry the same information, and are almost perpendicular to
the scm_commits_total. The number of components to be selected varies; in our
work the rule we adopted was to select only principal components that represent 20% of
the first principal component amplitude.

Figure 3.3: Principal Component Analysis for Ant 1.8.1 file metrics.

Figure 3.3 extends the previous example to a larger number of variables corresponding
to the whole set of a project’s files metrics. There are more components with a relatively
high variance, which means that all of the variations cannot be summarised in one or two

48

axes. In the case depicted here, only the 4 first components are selected by the 20% rule.
It should also be noted that PCA works well on common shapes, i.e. with variables

that show a Gaussian-like distribution, but is unable to sort out complex shapes like
imbricated circles – most common algorithms will fail on these anyway.

Jung et al. [100] apply principal component analysis to the results of a survey on the
comprehension of ISO 9126 quality characteristics by practitioners. They use it to propose
a new decomposition of quality attributes that better suit people’s perception of software
quality. In [179] Turan uses backward feature selection and PCA for dimensionality
reduction. On the NASA public data sets, the original set of 42 metrics is reduced to
15 with almost no information loss. Tsai and Chan [178] review various dimensionality
reduction techniques and compare PCA with other methods. They find out that PCA
works well for identifying coordinates and linear correlations in high dimensions, but is
unsuitable for nonlinear relationships among metrics.

Kagdi et al. [102] apply PCA to software measurement data to identify main domains
of variations among metrics and to build a prediction model for post-release defects.
Nagappan et al. [135] also use PCA to remove correlated metrics before building statistical
predictors to estimate post-release failure-proneness of components of the Windows Server
2003 operating system.

3.3 Clustering

Clustering techniques group items on the basis of similarities in their characteristics, with
respect to multiple dimensions of measurement. Representing data by fewer clusters
necessarily causes the loss of certain fine details but achieves simplification [24]. They are
also used to automatically decide on an automatic repartition of elements based on their
own characteristics [200].

The usability and efficiency of clustering techniques depend on the nature of data. In
peculiar cases (e.g. with concentric circles or worm-like shapes) some algorithms simply
will not work. The preparation of data is of primary importance to get the best out of
these methods; treating variables through a monotonal transformation, or considering
them in a different referential may be needed to get better results.

Clustering algorithms may be combined as well with of other techniques to achieve
better results. As an example, Antonellis et al. [7] apply a variant of k-means clustering on
top of the results of the AHP (Analytical Hierarchical Processing) of the output of a survey
on ISO 9126 quality characterisitcs. This is what we also did for the principal component
analysis and correlation matrix results of our product version analysis document – see
section 4.2.5. Applying clustering to the correlation results brings more knowledge by
identifying groups of inter-dependent artefacts or metrics.

Clustering is also used in outliers detection approaches by selecting elements that
either lie out of clusters or are grouped in small clusters [23, 165]. This is described later
in section 3.4.

49

3.3.1 K-means clustering

K-means is the most popular clustering tool used in scientific and industrial applica-
tions [24]; it aims at grouping n observations into k clusters in which each observation
belongs to the cluster with the nearest mean. This results in a partitioning of the data
space into Voronoi cells [59]. k-means algorithms are considered to be quite efficient on
large data sets and often terminate at a local optimum, but are sensitive to noise [115].

There are alternatives to the K-means algorithm, which use other computation methods
for the distance: k-medoid uses a median point in clusters instead of a weighted mean, and
k-attractors, which was introduced by Kanellopoulos et al. to address the specificities of
software measurement data [104]. In another study published in 2008 [193] Kanellopoulos
uses the k-attractors clustering method to group software artefacts according to the ISO
9126 quality characteristics.

k -means clustering has also been used for evaluation of success of software reuse: Kaur
et al. [107] apply k-means clustering to the results of a survey on the factors of success
for software reuse, and are able to extract meaningful categories of practices with a good
accuracy. Herbold et al. [88] apply k-means to time data (namely sloc and bugs) of
Eclipse projects to automatically detect milestones. Zhong et al. compare in [200] clusters
produced by two unsupervised techniques (k-means and neural-gas) to a set of categories
defined by a local expert and discuss the implications on noise reduction. They find that
both algorithms generally perform well, with differences on time and resource performance
and errors varying according to the analysed projects. In another paper [201] the same
authors cluster files in large software projects to extract a few representative samples,
which are then submitted to experts to assess software quality of the whole file set. More
recently Naib [136] applies k-means and k-medoids clustering to fault data (error criticality
and error density) of a real-time C project to identify error-prone modules and assess
software quality.

In another area of software, Dickinson et al. examine in [50] data obtained from
random execution sampling of instrumented code and focus on comparing procedures
for filtering and selecting data, each of which involves a choice of a sampling strategy
and a clustering metric. They find that for identifying failures in groups of execution
traces, clustering procedures are more effective than simple random sampling. Liu and
Han present in [127] a new failure proximity metric for grouping of error types, which
compares execution traces and considers them as similar if the fault appears to come from
a close location. They use a statistical debugging tool to automatically localise faults and
better determine failure proximity.

3.3.2 Hierarchical clustering

The idea behind hierarchical clustering is to build a binary tree of the data that successively
merges similar groups of points [134, 115, 24]. The algorithm starts with each individual
as a separate entity and ends up with a single aggregation. It relies on the distance matrix
to show which artefact is similar to another, and to group these similar artefacts in the

50

same limb of a tree. Artefacts that heavily differ are placed in another limb.
The algorithm only requires a measure of similarity between groups of data points and

a linkage criterion which specifies the dissimilarity of sets as a function of the pairwise
distances of observations in the sets. The measure of distance can be e.g. Euclidean
distance, squared Euclidean distance, Manhattan distance, or maximum distance. For
text or other non-numeric data, metrics such as the Hamming distance or Levenshtein
distance are often used. The following table lists the mathematical functions associated
to these distances.

Euclidean distance ‖a− b‖2 =
√∑

i(ai − bi)2

Squared Euclidean distance ‖a− b‖22 =
∑

i(ai − bi)2

Manhattan distance ‖a− b‖1 =
∑

i |ai − bi|

Maximum distance ‖a− b‖∞ = maxi |ai − bi|

The most common linkage criteria are the complete [44] (similarity of the furthest pair),
the single [162] (similarity of the closest pair), and the average [168] (average similarity
between groups) methods. They are listed in the next table with their computation
formulae.

Complete clustering max { d(a, b) : a ∈ A, b ∈ B }.

Single clustering min { d(a, b) : a ∈ A, b ∈ B }

Average clustering
1

|A||B|
∑

a∈A
∑

b∈B d(a, b)

Single linkage can produce chaining, where a sequence of close observations in different
groups cause early merges of those groups. Complete linkage has the opposite problem:
it might not merge close groups because of outlier members that are far apart. Group
average represents a natural compromise, but depends on the scale of the similarities.
Other linkage criteria include the Ward, McQuitty, Median, and Centroid methods, all of
which are available in the stats R package.

Hierarchical clustering is usually visualised using a dendogram, as shown in figure 3.4.
Each iteration of clustering (either joining or splitting, depending on the linkage) corre-
sponds to a limb of the tree. One can get as many clusters as needed by selecting the
right height cut on the tree: on the aforementioned figure the blue rectangles split the set
in 3 clusters while the green rectangles create 5 clusters.

There are a few issues with hierarchical clustering, however. Firstly, most hierarchical
algorithms do not revisit their splitting (or joining) decisions once constructed [24].
Secondly the algorithm imposes a hierarchical structure on the data, even for data for
which such structure is not appropriate. Furthermore, finding the right number of natural

51

Figure 3.4: Hierarchical Clustering dendogram for Ant 1.7.0 files.

clusters may also be hard to achieve. Almeida and Barbosa propose in [3] an approach to
automatically find the natural number of clusters present in the underlying organisation
of data. They also remove outliers before applying clustering and re-integrate them in the
established clusters afterwards, which significantly improves the algorithm’s robustness.

Variants of hierarchical clustering include Cure and Chameleon. These are relevant
for arbitrary shapes of data, and perform well on large volumes [24]. The Birch algorithm,
introduced by Zhang [199] is known to be very scalable, both for large volumes and for
high dimensional data.

3.3.3 dbscan clustering

Density-based clustering methods [115] try to find groups based on density of data points
in a region. The key idea of such algorithms is that for each instance of a cluster the
neighbourhood of a given radius (Eps) has to contain at least a minimum number of
instances (MinPts).

One of the most well-known density-based algorithm is dbscan [59]; it starts with an
arbitrary point in the data set and retrieves all instances with respect to Eps and MinPts.
The algorithm uses a spatial data structure (SRtree [106]) to locate points within Eps
distance from the core points of the clusters. Ester et al. propose an incremental version
of the dbscan algorithm in [58].

52

3.4 Outliers detection

3.4.1 What is an outlier?

Basically put, outliers are artefacts that differ heavily from their neighbours. More
elaborated definitions abund in the literature; in the following list the first two definitions
are generic and the three latter are more targeted to software engineering measurement
data.

 For Hawkins [85] an outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism.

 For Barnett and Lewis [18], an outlier is an observation (or subsets of observations)
which appears to be inconsistent with the remainder of that set of data.

 Yoon et al. [197] define outliers as the software data which is inconsistent with the
majority data.

 For Wohlin et al. [187] an outlier denotes a value that is atypical and unexpected in
the data set.

 Lincke et al. [126] take a more statistical and practical perspective and define outliers
as artefacts with a metric value that is within the highest/lowest 15% of the value
range defined by all classes in the system.

The plot on the left of figure 3.5 shows 7 outliers highlighted on a set of 3-dimensions
points. These differ from their neighbours by standing far from the average points on one
or more of their dimensions. The coloured plot on the right presents an interesting case:
most of the highlighted outliers are visually differing from the majority of points, excepted
for two of them which are hidden in the mass of points. These are different from their
neighbours on another dimension but seem to be normal on the two axes selected here.

Figure 3.5: Examples of outliers on a few data sets.

53

Hodge [92], Ben-Gal [23] and Chandola [35] provide extensive reviews of outliers
detection techniques. Cateni et al. [34] review their usage in a broad industrial applica-
tion perspective. Many studies apply outliers detection to security-related data for e.g.
insurance, credit card or telecommunication fraud detection [116, 145], insider trading
detection [166] and network intrusion detection systems [121] by detecting deviating
behaviours and unusual patterns. Outliers detection methods have also been applied to
healthcare data [120, 188] to detect anomalous events in patient’s health, military surveil-
lance for enemy activities, image processing [166], or industrial damages detection [35].
Mark C. Paulk [143] applies outliers detection and Process Control charts in the context
of the Personal Software Process (PSP) to highlight individual performance.

Another similar research area is the detection of outliers in large multi-dimensional
data sets. There is a huge variety of metrics that can be gathered from a software project,
from code to execution traces or software project’s repositories, and important software
systems commonly have thousands of files, mails exchanged in mailing lists or commits.
This has two consequences: first in high dimensional space the data is sparse and the
notion of proximity fails to retain its meaningfulness [1]. Second some algorithms are
inefficient or even not applicable in high dimensions [1, 65].

It should also be noted that too many outliers may be a synonym of errors in the
dataset [92, 35], e.g. missing values treated as zero’s, bugs in the retrieval process, wrong
measurement procedure. If they are justified, they can bring very meaningful information
by showing values at exceptional ranges. Take bugs as an example: a high number of
defects for a file would deserve more investigation into its other characteristics to determine
what criteria are correlated to this fault-proneness.

3.4.2 Boxplot

Laurikkala et al. [120] use informal box plots to pinpoint outliers in both univariate and
multivariate data sets. Boxplots show a great deal of information: the upper and lower
limits of the box are respectively the first and third quartile1 while the line plotted in the
box is the median2. Points more than 1.5 times the interquartile range3 above the third
quartile and points more than 1.5 times the interquartile range below the first quartile are
defined as outliers.

Figure 3.6 shows four boxplots for a sample of metrics: cloc, eloc, sloc, lc, plotted
with (right) and without (left) outliers. The points above the boxplots are the outliers,
and the boxes define the first and last quartiles. As is shown on the figure, in the context
of software measures there is often more space above the box than below the box, and
outliers are mostly (if not all, as displayed in the figure) above the upper end of the

1The quartiles of a ranked set of data values are the three points that divide the data set into four
equal groups, each group comprising a quarter of the data. First quartile is the value of the element
standing at the first quarter, third quartile is the value of the element standing at the third quarter.

2The median is the numerical value separating the higher half of a data sample from its lower half.
3The interquartile range (IQR) is the difference between the third and the first quartiles.

54

Figure 3.6: Boxplots of some common metrics for Ant 1.8.1, without and with outliers.

whiskers. This is consistent with the long-tailed distribution function observed for such
metrics, as presented in sections 3.7 and 4.2.2.

3.4.3 Local Outlier Factor

LOF (Local Outlier Factor) is an algorithm for identifying density-based local outliers
[30]. The local density of a point is compared with that of its neighbours. If the former
is significantly lower than the latter (with a LOF value greater than 1), the point is in
a sparser region than its neighbours, which suggests it is an outlier. A drawback of the
local outlier factor method is that it works only for numerical values. Cateni et al. [34]
compares the local outlier factor method with fuzzy-logic clustering techniques, showing
that the latter outperforms LOF but needs more computational time (roughly by a factor
of 10). LOF is also used by Dokas et al. [52] in network intrusion detection to identify
attacks in TCP connection data sets.

One may use the lofactor function from the DMwR package [177] for such a task; the
number of neighbours used for the LOF density can optionally be set. LOF outlier
detection may be used either on univariate or multivariate data. As for visualisation, it
should be noted that when the dissimilarities are computed on all metrics the highlighted
outliers may not visually stand out on the two metrics used for the plot.

3.4.4 Clustering-based techniques

Clustering techniques are also often used for outliers detection. The rationale is that data
points that either do not fit into any cluster or constitute very small clusters are indeed
dissimilar to the remaining of the data [165]. Yoon et al. [197] propose an approach based
on k-means clustering to detect outliers in software measurement data, only to remove
them as they threaten the conclusions drawn from the measurement program. In the

55

latter case the detection process involves the intervention of software experts and thus
misses full automation. Al-Zoubi [2] uses Partitioning Around Medians (PAM) to first
remove small clusters (considered as outliers) for robustness and then re-applies clustering
on the remaining data set. Other mining techniques have been applied with some success
to software engineering concerns, such as recommendation systems to aid in software
maintenance and evolution [33, 151] or testing [119].

3.5 Regression analysis

Regression analysis allows to model, examine, and explore relationships between a depen-
dent (response or outcome) variable and independent (predictor or explanatory) variables.
Regression analysis can help understand the dynamics of variable evolution and explain
the factors behind observed patterns. Regression models define the formula followed by
the variables and are used to forecast outcomes.

Regression analysis is used when both the response variable and the explanatory
variable are continuous, and relies on the following assumptions [86]: 1) constant variance,
2) zero mean error, and 3) independence of independent input parameters.

The adequacy of the model is assessed using the coefficient of determination R2 [133].
It measures the fraction of the total variation in y that is explained by variation in x. A
value of R2 = 1 means that all of the variations in the response variable are explained by
variation in the explanatory variable. One of the drawbacks of R2 is it artificially increases
when new explanatory variables are added to the model. To circumvent this, the adjusted
R2 takes into account the number of explanatory terms in a model relative to the number
of data points.

Usage of regression analysis

Postnett et al. use logistic regression in [146] to confirm relationships between the metrics-
based selection of defective components and the actual bugs found post-release. Sowe et
al. [169] use regression analysis to establish correlations between size, bugs and mailing
list activity data of a set of large open-source projects. They find out that mailing list
activity is significantly correlated (R2 = 0.79) with the number of bugs and size is highly
correlated (R2 = 0.9) with bugs. Gyimothy et al. [78] apply machine learning techniques
(decision tree and neural network) and regression analysis (logistic and linear) on fault
data against object-oriented metrics for several versions of Mozilla. All four methods yield
similar results, and classify metrics according to their ability to predict fault-proneness
modules.

Regression analysis is widely used to build prediction models for effort estimation,
software quality attributes evolution (maintainability, faults, community). In [60], Fedotova
et al. draw a comprehensive study of effort estimation models and use multiple linear
regression to predict efforts during a CMMi improvement program in a development
organisation. Results outperformed expert-based judgement in the testing phase but

56

dramatically failed in the development phase. Okanović et al. [139] apply linear regression
analysis to software profiling data to predict performance of large distributed systems.

Linear and polynomial regression

Linear regression tries to fit the data to a model of the form given in equation 3.1.
Polynomial regression tries to fit data to a second- (equation 3.2), third- (equation 3.3) or
higher level order polynomial expression.

y = ax+ b (3.1)
y = ax2 + bx+ c (3.2)

y = ax3 + bx2 + cx+ d (3.3)

A common practice in modern statistics is to use themaximum likelihood estimates
of the parameters as providing the “best” estimates. That is to say, given the data, and
having selected a linear model, we want to find the values for a and b that make the data
most likely.

(a) sloc vs. vg (b) sloc vs. scm_fixes

Figure 3.7: Linear regression examples

An example of a linear regression analysis is easily visible when the number of source
lines of code (sloc) is plotted against the cyclomatic complexity (vg). The result shows
a kind of more or less tight “exploding cloud” with a long shape, as shown in figure 3.7a.
The linear regression analysis draws a red line which is closest to the overall set of points.
The blue plot is the prediction of a second order regression model and the green plot is the
prediction of a third order regression model. If the shape of values is too large however
(i.e. variance is high), as shown in figure 3.7b, the prediction becomes inaccurate and is
not suitable.

57

3.6 Time series

Time series are defined as vectors of numbers, typically regularly spaced in time. Yearly
counts of animals, monthly means of temperature, daily prices of shares, and minute-
by-minute details of blood pressure are examples of time series. Time series analysis
accounts for the fact that data points taken over time may have an internal structure
(such as e.g. autocorrelation, trend or seasonal variation, or lagged correlation between
series) that should be accounted for. Time series analysis brings useful information on the
possible cycles, structure and relationships with internal or external factors. They also
allow practitioners to build prediction models for forecasting events or measures.

3.6.1 Seasonal-trend decomposition

STL (Seasonal-trend decomposition) performs seasonal decomposition of a time series into
seasonal, trend and irregular components using loess. The trend component stands for
long term trend, the seasonal component is seasonal variation, the cyclical is repeated but
non-periodic fluctuations, and the residuals are irregular components, or outliers. Time
series can be decomposed in R with the stl function from the stats package [147], which
uses the seasonal-trend decomposition based on loess introduced by Cleveland et al in
[37].

3.6.2 Time series modeling

Time series models were first introduced by Box and Jenkins in 1976 [29] and are intensively
used to predict software characteristics like reliability [81, 76] and maintainability [150].
As an example, some common flavours of time series models are presented below:

Moving average (MA) models where

Xt =

q∑
0

βjεt−j

Autoregressive (AR) models where

Xt =

p∑
1

αjXt−i + εt

Autoregressive moving average (ARMA) models where

Xt =

p∑
1

αjXt−i + εt +

q∑
0

βjεt−j

A moving average of order q averages the random variation over the last q time periods.
An autoregressive model of order p computes Xt as a function of the last p values of X.

58

So for a second-order process, we would use

Xt = α1Xt−1 + α2Xt−2 + εt

Autocorrelation

The autocorrelation function is a useful tool for revealing the inter-relationships within
a time series. It is a collection of correlations, pk for k = 1, 2, 3, . . ., where pk is the
correlation between all pairs of data points that are exactly k steps apart. The presence
of autocorrelations is one indication that an autoregressive integrated moving average
(ARIMA) model could fit the time series. Conversely if no autocorrelation is detected in
the time series it is useless to try to build a prediction model.

Amasaki et al. [4] propose to use time series to assess the maturity of components
in the testing phase as a possible replacement for current reliability growth models. By
analysing fault-related data they identify trend patterns in metrics which are demonstrated
to be correlated with fault-prone modules. In [89], Herraiz et al. use both linear regression
models and ARIMA time-series modeling to predict size evolution of large open-source
projects. They find out that the mean squared relative error of the regression models
varies from 7% to 17% whereas ARIMA models’ R2 ranges from 1.5% to 4%.

Herraiz et al. [90] use ARIMA models to predict the number of changes in Eclipse
components. Another study from the same authors [91] apply ARIMA modeling on three
large software projects, using the Box-Jenkins method to establish the model parameters.
They provide safe guidance on the application of such methods, listing threats to validity
and giving sound advice on the practical approach that they use.

3.6.3 Time series clustering

T. Liao draws a comprehensive survey on time series clustering in [125]. He identifies three
major approaches illustrated in figure 3.8: raw-data-based, which applies generic clustering
techniques to raw data, features-based, which relies on some specific features extraction,
and model-based approaches, which assume there is some kind of model or a mixture of
underlying probability distributions in data. Liao also lists the similarity/dissimilarity
distance used, the criteria to evaluate the performance of the analysis, and the fields of
application for each type of analysis.

3.6.4 Outliers detection in time series

Gupta et al. [76] takes a comprehensive and very interesting tour on outliers detection
techniques for time series data. He proposes a taxonomy (depicted in figure 3.9) to
classify them, then reviews the different approaches: supervised, unsupervised, parametric,
model-based, pattern-based, sliding-window. Stream series is also considered, which is
useful for current-trend analysis of real-time data. Limitations, advantages and pragmatic
application of methods are also discussed.

59

Figure 3.8: Major approaches for time series clustering [125].

Figure 3.9: Major approaches for outliers detection in time series [76].

Many classical outliers detection in time series techniques assume linear correlations
in data, and have encountered various limitations in real applications. More robust
alternatives have recently arisen through non-linear analysis, as reviewed in [74] by
Gounder et al.

3.7 Distribution of measures

A distribution function gives the frequency of values in a set. Distribution functions may be
discrete, when only a restricted set of values is allowed, or continuous, e.g. when values are
real. Some common distribution functions are the normal and exponential distributions,
depicted respectively on the left and right of figure 3.10. Distribution functions are
characterised by an equation and a few parameters; as an example the normal distribution
is defined by equation 3.7 and parameters mean and standard deviation.

P (x) =
1

σ
√
2π

exp−(x−µ)
2/(2σ2)

Distribution functions essentially show what is the typical repartition of values for an

60

Figure 3.10: Normal and exponential distribution function examples.

attribute of data. They are usually illustrated with a histogram (see figure 4.2 on page 73
for an example), plotting the values against their occurrence frequency. The impact of
distribution of software measures is twofold:

 It allows practitioners to safely build estimation (guess at a parameter value for
a known configuration) and prediction (i.e. guess at some value that is not part
of the data set) models. For exploratory analysis it gives typical values for the
measures and thus helps to identify outliers and erroneous data (e.g. missing values
or retrieval issues).

 Many statistical algorithms rely on the fact that the underlying distribution of
data is normal. Although this assumption is correct in a vast majority of domains,
one may want to know how close (or how far) reality is from this common basic
hypothesis, as in the case of software engineering.

It is not easy though to establish the formal distribution of a set of measures. Techniques
like qq-plots and Shapiro test allow to check data for a specific distribution, but the
variety of distribution shapes available nowadays makes it difficult to try them all. Classic
distributions are not always well-fitted for all metrics.

In [198], Zhang fits software faults data to Weibull and Pareto distributions and uses
regression analysis to derive the parameters of the different distribution functions. The
coefficient of determination is then used to assess the goodness of fit.

3.7.1 The Pareto distribution

Fenton and Ohlsson published in 2000 [64] a study that states that the number of faults
in large software systems follows the Pareto principle [101], also known as the “80-20
rule”: 20 percent of the code produces 80 percent of the faults. Andersson and Runseon
replicated the study on different data sets in 2007 [5], globally confirming this assumption.
The Pareto distribution can be defined as [40]:

61

P (x) = 1− (
γ

x
)β with (γ > 0, β > 0)

In recent studies the Pareto principle has been further re-enforced by Desharnais et al.
in [48] for the ISO/IEC 9126 quality attributes repartition, and by Goeminne for open
source software activity in [72].

3.7.2 The Weibull distribution

However Zhang [198], further elaborating on Fenton and Ohlsson study on fault distribution,
proposed in 2008 a better match with the Weibull distribution as shown in figure 3.11.

Figure 3.11: Distribution of prerelease faults in Eclipse 2.1 [198].

The Weibull distribution can be formally defined as:

P (x) = 1− exp (−(x
γ
)β) with (γ > 0, β > 0)

Simmons also proposed in [163] and [164] the Weibull distribution for defect arrival
modeling. This is especially useful in answering long-running questions like when to stop
testing?.

3.8 Summary

In this chapter we reviewed the main data mining techniques that will be useful for the
purpose of our research. We explored principal component analysis for the upcoming
dimensionality reduction paper, clustering and outliers detection analysis for the Squore
Labs, and time series analysis for software evolution. The papers listed herein will be used
often throughout the forthcoming work, either as references or for further investigation.

On the one hand, data mining techniques have recently greatly improved, especially
regarding their robustness and ability to handle non-normal and non-linear cases. The

62

domains driving this development are mainly economics, business analysis, and bioin-
formatics. On the other hand, these techniques have scarcely been applied to software
engineering data, because even if statisticians may be occasional developers or computer fa-
natics, they do not necessarily know much about software engineering. Software engineers
do not necessarily have a statistician background either.

Nevertheless in recent years the application of data mining techniques to software
engineering data really gained wide interest both in academic research and in industrial
applications. The MSR (Mining Software Repositories) conference, started in 2004,
fertilises the field every year with many new articles and ideas [86]. Tao Xie has been
working on this specific domain for years, building a comprehensive bibliography [189]
and publishing numerous important studies.

The trends and advances observed in recent years in this area of knowledge should be
carefully watched. The very specificities of software measurement data (e.g. non-normal
distributions of metrics, changes in variance on the measurement’s range, non-cyclic
evolution of variables) need specific treatments: algorithms with an improved robustness,
models and methods for non-linear and non-normal data.

63

64

Part II

The Maisqual project

A learning experience is one of those
things that says, “You know that thing
you just did? Don’t do that.”

Douglas Adams

65

Overview

During the second phase of the project, we try out and organise our toolshelf, and prepare
the foundations for the upcoming Squore Labs.

Literate analysis documents developed during this phase and presented in chapter 4
provide a sandbox for investigations and trials. These are meant to be instanciated and
optimised into dedicated documents for research on specific areas and concerns.

We elaborate in chapter 5 a method for data retrieval and analysis to ensure consistency
and meaning of results. It is implemented and fully automated to provide a sound and
practical basis for further research.

We generate in chapter 6 a set of metrics related to various projects written in C and
Java, thoroughly describing the metrics and rules extracted from the project. Time ranges
span from a few random extracts to extensive weekly historical records. The measures are
retrieved from unusual repositories, allowing us to extract information targeted at new
areas of quality like community (e.g. activity, support) and process (e.g. planning, risk,
change requests management).

The output of this part of the project consists in the publication of the data sets and
the description of the methodological and tooling framework designed for the Squore
Labs detailed in part III.

67

68

Chapter 4

Foundations

In addition to building the state of the art for both data mining and software engineering,
we also wished to implement some of the methods we found in the papers we read. Also,
from the project organisation perspective, we wanted to run reproducible experiments to
better appreciate and understand both the problem and the available ways to solve it.
This application of academic and industrial knowledge and experience to real-life data
and concerns is the genesis of Maisqual.

The present chapter describes the early steps of Maisqual and the process we followed
to run trials and investigate various paths. It is for the most part written in chronological
order to reflect the progression of work and development of ideas. The output of this
time-consuming phase is a clear roadmap and a well-structured architecture for the next
programmed steps.

Section 4.1 describes how we fashioned the data mining process and managed to
retrieve the first round of data and run the first task. We quickly used literate data
analysis to run semantic-safe investigations. Two main documents were written: one a
study of a single version of a project, described in section 4.2; and another a study of
a series of consecutive snapshots of a project, described in section 4.3. The experience
gathered during these trials provided us with lessons expounded in chapter 4.4 that allowed
us to formalise different axes summarised in a roadmap in section 4.5.

4.1 Understanding the problem

4.1.1 Where to begin?

While investigating the state of the art we wanted to apply some of the described techniques
on real data to experiment with the methods described. To achieve this we decided at first
to gather manually various metrics from different sources (like configuration management
tools, bug trackers) for a few open-source projects and started playing with R.

We wrote shell and Perl scripts to consistently retrieve the same set of information
and faced the first retrieval problems. Projects use different tools, different workflows,
bugs search filters were not consistent with the code architecture, or past mailboxes

69

were not available. Scripts became more and more complex as local adaptations were
added. We applied R scripts on the extracted data sets to print results on output and
generate pictures, and integrated them in the toolchain. Since the data retrieval steps
were error-prone, we wrote Perl modules for the most common operations (retrieval, data
preparation and analysis) and all the configuration information needed to individually treat
all projects. R chunks of code were embedded in Perl scripts using the Statistics::R
CPAN module.

However we quickly ended up with too many scripts, and had trouble understanding
afterwards the same outputs. Comments in R scripts are great for maintainability, but
fail to provide a sound semantic context to the results. We needed a tool to preserve the
complex semantic of the computations and the results. These Perl scripts and modules
have really been a workbench for our tests: some of the R code has been moved to
a dedicated package (maisqual) or to Knitr documents, while other parts have been
integrated as Data Providers for Squore.

4.1.2 About literate data analysis

At this point, we found the literate analysis principle very convenient to generate reports
with contextual information on how graphics are produced, what mining method is being
applied with its parameters’ values, and to some extent how it behaves through automatic
validation of results1. Literate data analysis has been introduced by Leisch [69] as an
application of Donald Knuth’s principles on literate programming [112]. The primary
intent was to allow reproducible research, but its benefits reach far beyond later verification
of results: practitionners get an immediate understanding from the textual and graphical
reports, and documents and conclusions are easier to share and to communicate.

Leisch wrote Sweave to dynamically insert results of R code chunks into LATEX docu-
ments. These results can either be textual (i.e. outputs a single information, or a full table
of values) or graphical through R extended graphical capabilities. Xie further enhanced
this approach with Knitr [191], an R package that integrates many Sweave extensions
and adds other useful features. Among them, Knitr allows to use caching for chunks of
code: when the code has not changed the chunk is not executed and the stored results are
retrieved, which gives remarkable optimisations on some heavy computations. Conditional
execution of chunks also allows to propose textual advice depending on computational
results, like Ohloh’s factoids2. This is a very important point since it provides readers
with contextually sound advice.

1As an example, p-values returned by regression analysis algorithms can be interpreted quite easily.
2www.ohloh.net lists simple facts from the project’s statistics. Examples include “mostly written in

Java”, “mature, well-established codebase”, “increasing year-over-year development activity”, or “extremely
well-commented source code”.

70

http://www.ohloh.net

4.2 Version analysis

We wrote a first Sweave document, which served as a workshop to explore techniques
and as a laboratory for the papers we read. Since our primary background is software
engineering, we had to experiment with the data mining algorithms to understand how
they work and how they can be applied to software engineering concerns. The analysis was
performed both at the file and function levels, with minor changes between them – some
metrics like configuration management metadata not being available at the function level.
At one point we migrated this document to Knitr [191] because of the useful features it
brings (namely caching and conditional execution). We heavily relied on The R Book [41]
from M. Crawley, and the R Cookbook [175] from P. Teetor to efficiently implement the
different algorithms.

4.2.1 Simple summary

The simple summary shows a table with some common statistical information on the
metrics, including ranges of variables, mean, variance, modes, and number of NAs (Not
Available). An example is shown below for JMeter3.

Metric Min Max Mean Var Modes NAs
cft 0 282 25.5 1274.3 128 0
comr 5.6 95.9 47.5 348.2 778 0
ncc 0 532 59.6 4905.8 200 0
sloc 3 695 89.2 10233.4 253 0
scm_commits 0 202 13.5 321.8 43 0
scm_committers 0 8 2.3 1.9 9 0

These tables show the usual ranges of values and thus allows to detect faulty measures,
and provides quick insights on the dispersion of values (variance). The number of modes
and NAs is useful to detect missing values or errors in the retrieval process.

Scatterplots of metrics are also plotted, as shown in figure 4.1 for the JMeter extract
of 2007-01-01. One can immediately identify some common shapes (e.g. all plots involving
comr have values spread on the full range with a specific silhouette) and relationships
(e.g. for sloc vs. eloc or sloc vs. lc). The document preamble also filters metrics
that may harm the applied algorithms: columns with NAs, or metrics with a low number
of modes (e.g. binary values) are displayed and discarded.

3For a complete description of metrics used in this document, check section 6.1 on page 106.

71

Figure 4.1: Scatterplots of common metrics for JMeter 2007-01-01.

4.2.2 Distribution of variables

Since many algorithms make the assumption of a normal distribution of values, we wanted
to check data sets for normality. For this we plotted the histogram of some measures, as
pictured in figure 4.2. We realised that for most of the metrics considered, the distribution
was actually not Gaussian, with a few metrics as possible exceptions (e.g. comr). This
later on led to questions about the shapes of software4.

4.2.3 Outliers detection

Outliers detection is also tested through boxplots [120] and Local Outlier Factor [30].
Boxplot is applied first to every metric individually: for each metric, we count the number
of outliers and compute percent of whole set, and list the top ten outliers on a few
important metrics (e.g. scm_fixes or vg). Multivariate outliers detection is computed
on a combination of two metrics (sloc vs. vg and sloc vs. scm_fixes) and on a
combination of three metrics (sloc vs. vg vs. scm_fixes). Examples of scatterplots
showing the outliers on these metrics are provided in figures 4.2a and 4.2b. These plots
illustrate how outliers on one metric are hidden in the mass of points when plotted on

4A research article is in progress about shapes of software – see conclusion on page 176 for more
information.

72

Figure 4.2: Examples of distribution of metrics for Ant 1.7.

another metric. We also tried to plot the overall union and intersection of outliers on
more than 3 metrics, but it consistently gave unusable results, with respectively all and
no points selected.

(a) sloc and vg (b) sloc, vg and scm_fixes

Figure 4.2: Combinations of boxplots outliers for Ant 1.7.

These have been the early steps of the Outliers detection Squore Labs – cf. chapter
8 on page 137.

4.2.4 Regression analysis

We applied linear regression analysis and correlation matrices to uncover the linear
relationships among measures. We used a generalised approach by applying a pairwise
linear regression to all metrics and getting the adjusted R2 for every linear regression.

To help identify correlations, only cases that have an adjusted R2 value higher than

73

Figure 4.3: Linear regression analysis for Ant 2007-01-01 file metrics.

0.2 are displayed, and higher values (with R2 > 0.9) were typeset with a bold font. An
example of result for Ant 2007-01-01 is shown on figure 4.3. In the upper table one can
find the afore-mentioned correlations between sloc and eloc (0.997) and between sloc
and lc (0.947). The hierarchical clustering dendograms at the bottom of the figure classify
similar metrics (e.g. eloc, lc and sloc) together on the same limb of the tree.

We also computed hierarchical clusters on results to help identify metrics that have
high correlation rates. Several aggregation methods were used and displayed, both for our
own comprehension of the aggregation methods and to highlight metrics that are always
close. The correlation matrix, also computed, gave similar results.

4.2.5 Principal Component Analysis

Principal component analysis is used to find relevant metrics on a data set. Many software
measures are highly correlated, as it is the case, for example, for all line-counting metrics.
Using a principal component analysis would allow to find the most orthogonal metrics in
terms of information. The variance gives the principal components representativity.

For our trials, we computed PCA on metrics using R princomp from MASS [180],
and kept only principal components with a variance greater than 20% of the maximum
variance (i.e. variance of the first component). The restricted set of components was
output in a table as shown in the following table, with values lower than 0.2 hidden to help
identify components repartition. One can notice that in this example the first component
is predominently composed of size-related metrics with similar loadings (around 0.3).

74

Metric 1st Comp. 2nd Comp. 3rd Comp. 4th Comp.
blan -0.29
cft -0.31
clas 0.21 0.95
cloc -0.28 -0.30
comr -0.38 -0.86
eloc -0.31
func -0.29
lc -0.31
scm_commits -0.24 -0.47
scm_committers -0.54 0.27
scm_fixes -0.24 -0.43
sloc -0.31
stat -0.30
vg -0.31

However this gave inconsistent and unpredictable results when applied over multiple
projects or multiple releases: metrics composing the first components are not always the
same, and loadings are not representative and constant enough either. We decided to
leave this to be continued in a later work on metrics selection5.

4.2.6 Clustering

Various unsupervised classification methods were applied on data: hierarchical and K-
means clustering from the stats package, and dbscan from the fpc package [87].

Hierarchical clustering was applied both on metrics (to identify similar variables)
and artefacts (to identify categories of files or functions). Extensive tests were run on this,
with various aggregation methods (Ward, Average, Single, Complete, McQuitty, Median,
Centroid) and numbers of clusters (3, 5, 7, 10). The repartition into clusters was drawn in
colourful plots. In the dendogram depicted in figure 4.4 the blue and green boxes define
respectively 3 and 5 clusters into the forest of artefacts. Plots underneath illustrate the
repartition of artefacts in 5 coloured clusters.

Two types of tables were output for hierarchical clustering: the number of items in
each cluster, as presented in next section for k-means clustering, and the repartition of
files or functions in a static number of clusters with the various aggregation methods. The
latter produces tables as shown below for five clusters:

5A research article is in progress about metrics selection – see conclusion on page 176 for more
information.

75

Method used Cl1 Cl2 Cl3 Cl4 Cl5 Total
Ward 365 11 202 403 132 1113
Average 1005 7 97 1 3 1113
Single 1109 1 1 1 1 1113
Complete 1029 7 73 1 3 1113
McQuitty 915 7 187 1 3 1113
Median 308 7 794 1 3 1113
Centroid 1000 7 102 1 3 1113

Figure 4.4: Hierarchical clustering of file metrics for Ant 1.7 – 5 clusters.

76

K-means clustering was applied on the whole set of metrics, with a number of clusters
of 3, 5 and 7. The repartition into clusters was drawn in colourful plots as shown in figure
4.5. The number of artefacts in each cluster was output in tables like the following:

Number of clusters Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7
3 37 914 162
5 58 317 114 613 11
7 58 317 155 319 88 59 11

Figure 4.5: K-means clustering of file metrics for Ant 1.7 – 5 clusters.

4.2.7 Survival analysis

Survival analysis is often used to analyse mortality data, e.g. for time or risk of death of a
class of individuals. In our context, survival analysis can be applied to the analysis of
failures of components; it involves the number of failures, the timing of failures, or the
risks of failure to which a class of components are exposed.

Typically, each component is followed until it encounters a bug, then the conditions
and time of failure are recorded (this will be the response variable). Components that live
until the end of the experiment (i.e. that had no registered bug until the time of analysis)
are said to be censored. This is especially useful to study the Mean Time To Failure
(mttf) or Mean Time Between Failure (mtbf) of a component.

We tried to define a set of metrics pertinent to the time of failure of a component.

 The number of commits before the first bug is detected in commit messages.
 The age in days of the file before the first bug is detected in commit messages.
 The average number of commits between two bugs-related commit messages.
 The average number of days between two bugs-related commit messages.

However these metrics were difficult to compute reliably because of the lack of consis-
tency in naming conventions (i.e. how to detect that a commit is related to a bug?), and
we could not get consistent, predictable results.

77

To our knowledge, there is very little research on the application of survival analysis
techniques to software engineering data, although there exists some early work for power-
law shaped failure-time distributions. Reed proposes in [149] a hazard-rate function
adapted to power-law adjusted Weibull, gamma, log-gamma, generalised gamma, lognormal
and Pareto distributions.

Survival analysis, as applied to failure-time of software
components, provides interesting tools and new insights
for software engineering. Although many methods as-
sume a normal distribution, more robust algorithms have
lately arisen that could be useful for software data, such
as [149]. One may get better results by establishing reli-
able links between configuration management and bug
tracking systems and mapping the circumstances of death
(e.g. component impacted, type of bug, time of rework,
or severity) to applications and file characteristics.
Examples of practical usage for these methods include:
enhancing or replacing current reliability-growth models,
which are used to estimate the number of residual bugs
after testing, and analysing the impact of practices on
the reliability and failure-time of components.

4.2.8 Specific concerns

The intention of this section was to formulate specific questions, but it was quickly put
aside since we switched to dedicated documents to address specific concerns (e.g. for
the Squore Labs). Only one target was actually defined for regression analysis on the
scm_fixes metric. We applied first, second and third-order polynomial regression to
explain this variable with other meaningful metrics such as sloc, vg, scm_commits
or scm_committers. This was intended as a verification of some urban legends that
one may often hear. Figure 4.5 plots the number of fixes identified on files (scm_fixes)
against their cyclomatic number (vg) and the number of different committers that worked
on the file (scm_committers). The red line is a linear regression (y = ax+ b), the blue
plot is the prediction of a second order regression model (y = ax2 + bx+ c), and the green
plot is the prediction of a third order regression model (y = ax3 + bx2 + cx+ d). In the
left plot curves suggest an order 2 polynomial correlation in this case (see chapter 9 for
further investigations).

Some significant numbers were also computed and displayed in full sentences: the
average number of fixes per 1000 Source Lines Of Code, and the average number of
fixes per cyclomatic complexity unit. However, we have not been very confident in these
measures for the same reasons that Kaner exposed for the mttf in [105].

78

(a) scm_fixes vs. scm_committers (b) scm_fixes vs. vg

Figure 4.5: First, second and third order regression analysis for Ant 1.7.

4.3 Evolution analysis

The second Sweave document we wrote targeted the evolution of metrics across the
successive versions of a software project. Very useful information can be extracted from
temporal data, regarding the trend and evolution of project. For business intelligence or
project management the latter is of primary importance.

The first version of the document included all application-, file- and function- levels
analyses. This proved to be a bad idea for a number of reasons:

 It was very long to run and error-prone. A single run lasted for 20 to 30 minutes,
depending on the number of versions analysed. Furthermore, it was difficult to have
all algorithms run correctly on such a huge amount of data: when an error pops up
on a chunk of code, e.g. on a function-level analyse, then the whole document has
to be re-executed. When it runs fine (after many trials) on a project, then chances
are good that it will fail again on another set of data.

 Considering all files and functions across successive versions introduces a bias which
may considerably threaten the results. If a file is present in more than one version,
then we are analysing twice or more the same artefact – even if it has differing
measures. For algorithms like outliers detection or clustering, this is a blocker: if
a file lies outside of typical values on a single version, it has all its siblings from
other versions next to it when considering multiple versions, and is not an outlier
anymore. We introduced some formulae to compute application-level summaries of
each version, but it took far too much time to be usable.

So we quickly split this huge document into three smaller articles for the different
levels of analysis (application, files, functions), and soon after only the application-level

79

document was updated and used. Many of the techniques applied here were borrowed
from the version analysis Sweave document. Besides these, the following new algorithms
were defined in the application-level evolution analysis documents.

4.3.1 Evolution of metrics

One of the first steps to get to know a variable is to plot its evolution on the full time
range. Data is converted to time series with the xts R package [155], and then plotted
and treated with the package’s facilities. Examples of metrics evolution for the Ant data
set6 are displayed in figure 4.6.

Figure 4.6: Metrics evolution for Ant: sloc and scm_committers.

4.3.2 Autocorrelation

Autocorrelation in time series analysis describes how this week’s values (since we are
working on weekly extracts) are correlated to last week’s values – this is the autocorrelation
at lag 1. Partial autocorrelation describes the relationship between this week’s values
and the values at lag t once we have controlled for the correlations between all of the
successive weeks between this week and week t. Autocorrelation can be applied on a
single variable, as shown in figure 4.7 for the vg, sloc and scm_fixes for Ant 1.7. The
trends show that values at time t highly depend on values at time t− 1, midly depends
on values at time t− 2, etc. In other words, the impact of past values on recent values
decreases with time.

6See section 6.3.1 for a description of this data set.

80

Figure 4.7: Univariate time-series autocorrelation on vg, sloc and scm_fixes for Ant.

Figure 4.8: Multivariate time-series autocorrelation on vg, sloc for Ant.

81

The autocorrelation can be computed on different metrics, to check if the evolution
of some metrics depend on the values of others. The scatterplot displayed on figure 4.8
shows how the evolution of the sloc and vg metrics are inter-dependent.

4.3.3 Moving average & loess

A simple way of seeing patterns in time series data is to plot the moving average. In our
study we use the three-points and five-points moving average:

y′i =
yi−1 + yi + yi+1

3

y′′i =
yi−2 + yi−1 + yi + yi+1 + yi+2

5

It should be noted that a moving average can never capture the maxima or minima
of a series. Furthermore, it is highly dependent on the variable variations and is usually
really close to the actual data.

Figure 4.9: Moving average and loess on sloc, lc, scm_committers and scm_fixes
for Ant 1.7.

loess is an iterative smoothing algorithm, taking as parameter the proportion of
points in the plot which influence the smooth. It is defined by a complex algorithm
(Ratfor by W. S. Cleveland); normally a local linear polynomial fit is used, but under
some circumstances a local constant fit can be used. In figure 4.9 the green plots represent
the 3-points moving average (light green, chartreuse3) and 5-points moving average (dark
green, chartreuse4). Loess curve is plotted in purple, with from light to dark purple
smoother spans of 0.1, 0.3, 0.5 and 2/3 (the default setting).

82

4.3.4 Time series decomposition

Time series were first decomposed with robust regression using the R function stl from the
xts package [155]. STL (Seasonal-trend decomposition) performs seasonal decomposition
of a time series into seasonal, trend and irregular components using loess. The trend
component stands for long term trend, the seasonal component is seasonal variation,
the cyclical is repeated but non-periodic fluctuations, and the residuals are irregular
component, or outliers.

We quickly abandonned STL decomposition, for the data we had at that time was
not periodic and the algorithm constantly failed to find seasonal and cyclical terms.
For projects that use an iterative development process however, one should be able to
decompose many measures at the iteration cycles.

One of the issues we had with time series was that anal-
ysed projects did not show cycles that would allow usage
of STL decomposition and thus predict future behaviour
and propose typcial templates for metrics evolution. To
further investigate this, we need to apply our Knitr doc-
uments to agile projects (as can be found e.g. on github)
and study the evolution of metrics across multiple itera-
tions.

4.3.5 Time series forecasting

This section applied regression models on the temporal evolution of metrics. We give an
example of a run on the Ant evolution data set hereafter, with some explanations on the
optimisation methods we use.

Table 4.1: ARMA components optimisation for Ant evolution.

O
rd
er

a
r

m
a
=
0

a
ic

m
a

a
r
=

0

a
ic

m
a

a
r
+

a
ic D
iff

a
ic

1 1.00 168.61 1.00 4062.91 1.00 170.73 1.00 89.42
2 2.00 160.54 2.00 3283.74 2.00 173.91 2.00 71.91
3 3.00 158.16 3.00 2722.46 3.00 188.52 3.00 126.06
4 4.00 157.53 4.00 2225.62 4.00 160.53
5 5.00 158.21 5.00 1917.32 5.00 158.97
6 6.00 159.90 6.00 1639.14 6.00 130.65

Three time series models were experimented on data: MA (moving average), AR
(autoregressive), and ARMA (autoregressive moving average), borrowed from [29]. We
try to find the best parameters for the arma model: the order of the autoregressive
operators, the number of differences, and the order of moving average operators. We look

83

Figure 4.10: Time series forecasting for Subversion and JMeter.

at the autoregressive operator first: the arima function from the stats [147] package is
invoked with 6 different orders, while ma and differences are null, and we get the minimum
aic. The same technique is applied to the moving average operators, zero-ing ar and
differences. For differences, the optimised values for the ar and ma components are used
and the same iterative process is executed to detect the lowest aic. Results of ARMA
parameters optimisation for Ant files are displayed in table 4.1.

In our example, the best order for the autoregressive process (ar lag) (without moving
average component) is 4, the best order for moving average (without autoregressive
component) is 6 and the optimal number of differences is 2. These settings are used to
forecast metrics at given times of the project history: first, second and third quarters, and
at the last time in history (which is 2012-07-30 in our case).

In practice this never worked well on the data we were working on: confidence intervals

84

were far too wide to be usable, as shown in figure 4.10.

4.3.6 Conditional execution & factoids

As presented earlier in this chapter, Knitr offers an interesting feature in the conditional
execution of chunks of code. It allows to disable fragile algorithms which would fail in
some cases (e.g. when a distance matrix cannot be computed), and thus considerably
enhances the reliability of documents. We used it frequently in our documents to restrict
the analysis of class related information to object-oriented code.

LATEX code also defines if statements to conditionally display text. Under some
assumptions, one can retrieve the value of variables from the R chunks into the LATEX
formatting structure and use it to print custom sentences with dynamically generated
numbers.

We used it to mimic Ohloh factoids as a proof of concept, but this could be extended to
provide advice based on the execution of complex algorithms – a few examples being [194,
195, 88, 107]. The following two examples in R and LATEX show how the project size
Ohloh factoid was implemented in the evolution analysis document.

if (project_length < 1) {
From 0 to 1 year => New
MFACTTIMEA <- project_length
MFACTTIMEB <- FALSE
MFACTTIMEC <- FALSE
MFACTTIMED <- FALSE

}

\ifMFACTTIMEA
\item The project is all new. It has been created less than one year ago.
\fi
\ifMFACTTIMEB
\item The project is young: it has between one and three years of development.
\fi

Factoids should be further investigated because they offer
significant opportunities for custom advice in reports
based on high-complexity analysis. They are similar to
the Action Items provided by Squore (see chapter 8
for more information) but greatly extend the scope of
the methods available to detect them. Recommender
systems [83, 83] may also be included for better advice
based on the experience gathered.

85

4.4 Primary lessons

4.4.1 Data quality and mining algorithms

Since we had very little knowledge of the mining characteristics of software engineering
data at that time, we had to try several methods before finding one that really did what
was intended. Because of the distribution function of many software metrics and the
very specificities of software measurement data (e.g. correlations amongst metrics) some
algorithms give bad, unusable results or simply do not work.

The first example is about missing values. In many cases a single NA in the whole
matrix causes algorithms to fail. They have to be identified first and then either replaced
with some default values (e.g. zeros, depending on the metric) or have the whole column
removed. Some algorithms, like matrix distances or clustering, need a minimum variance
on data to be safely applied – and metrics that only have a few different values make them
constantly fail. Data has to be checked, cleaned, and repaired or discarded if needed.

Another example of a difficult method to apply was the time series decomposition of
evolution metrics. We tried to find metrics that would show cycles or repeated patterns
(possibly with lag), to normalise or more generally prepare data, or try different algorithms.
We also had a hard time using arima models for prediction: they often failed (i.e. stopped
the R script execution) when the data was too erratic to conclude on parameters. Even
when it worked (i.e. passed on to the next command) results were not convincing, with
very low p-values and bad curves on prediction graphs.

We encountered some issues with configuration management metrics. Firstly, Config-
uration management purpose is to remember everything, including human or technical
errors. One example is when someone accidentally copies a whole hierarchy and does not
notice it before making the commit. Even if this is corrected shortly after, say in next
commit, it will still appear as a huge peak in statistics. Secondly SCM operations, like
merges, can introduce big bang changes in the repository contents, potentially impacting
almost every other metric. Sources of such actions may be error (typos, thoughtlessness...),
poor knowledge or bad practices, or may even be intended and correct.

One answer to this problem is to always check for consistency and relevance of results,
with confidence intervals and statistical tests. From there on, we used p-values for our
regressions and prediction models.

4.4.2 Volume of data

We worked with a huge amount of data, and this had a deep impact on the way we
conducted our analyses. As an example the GCC project is one of the biggest projects that
we analysed. It spans over several years, and gathering weekly versions of its sources took
a huge amount of time. A single version of its sources (Subversion extract at 2007-08-27)
is 473MB, and contains roughly 59 000 files. The code analysis of this version takes nearly
one and a half hours to complete, data providers (Checkstyle, PMD) take 40 minutes,

86

and the Sweave analysis takes another 30 minutes. Running the analysis on the full GCC
weekly data set takes fifteen days.

Table 4.2 lists some of the projects gathered for our analyses. The full hierarchy of
source files takes approximately 250GB of disk space.

Table 4.2: Number of files and size on disk for some projects.

Project Files Size on disk
Ant releases 37 336 400MB
Ant weekly 1 421 063 14.8GB
Papyrus weekly 2 896 579 44GB
JMeter releases 44 096 600MB
JMeter weekly 930 706 14.1GB
GCC releases 1 939 018 18GB
GCC weekly 27 363 196 88GB
Subversion releases 140 554 3.2GB
Subversion weekly 407 167 8.8GB

The computing power and resources used conducted how we worked. For long-running
tasks spanning over days or weeks (e.g. weekly extracts and analyses), if a single error
occurs during the process (e.g. bad XML entities in PMD or Checkstyle files) then the full
extract may be corrupted, and thrown away. Projects may also put requests or bandwidth
limits to preserve their resources, especially for huge lists of bugs or data-intensive needs;
scripts sometimes have to introduce random delays to not meet timeouts.

One has to setup checkpoints that allow to restart the process (either for extraction
or analysis) where it failed in order to not have to start it all over again. Another good
practice is to consistently check the data from the beginning to the end of the process, as
subsequently explained.

4.4.3 About scientific software

Scientific software, as every software product, is subject to bugs, faults and evolutions.
This has been pointed out by Les Hatton [84] and D. Kelly and R. Sanders [108], who
argue that most scientific results relying on computational methods have some bias. These
may either be introduced by non-conformance to explicit requirements (i.e. bugs in code)
or evolving implicit requirements.

The Maisqual case is no exception: the products we rely on (Squore, R, Checkstyle
or PMD) have their own identified bugs – or even worse, non-identified faults. On a time
range of three years this may have a significant impact on results. We list below a few
examples on the different products we use:

 Squore had a few changes in its requirements: one in 2012 relating to Java inner
types detection, and another in 2013 regarding files and functions headers. Should

87

anonymous classes be considered as self-standing classes? Although they cannot
compare to typical classes as for the number of public attributes or complexity, they
still are class structures as defined by the Java language.

 Checkstyle has about 60 bugs registered on the 5.0 version7 and PMD has 14
registered issues on the 5.0.5 version8. Issues span from false positives to violent
crashes. The versions for R (3.0.1) and its packages also have a number of issues:
111 registered issues as of 2013 on R-core9, 9 registered bugs on Knitr 1.610.

Another source of bugs comes from the integration between tools: if the output format
of the tool evolves across versions, some constructions may not be seen by the next tool
in the process. We also have to do our mea culpa: the scripts we wrote have been found
guilty as well and corrected during time.

As an answer to these concerns, we decided to value the consistency of results over
exact conformance to a subjective truth: if the sloc as computed by Squore differs from
some essays in literature we simply stick to our definition, providing all the information
needed for others to reproduce results (through clear requirements and examples) and
trying to be consistent in our own process. When we encountered a bug that changed
output, we had to re-run the process to ensure consistency and correctness of all data sets.

4.4.4 Check data

Retrieved data should be checked at every step of the mining process for consistency and
completeness. Every project has its own local traditions, customs and tools, and this
variety makes automation mandatory but very fragile. Sanity checks must be done from
time to time at important steps of the retrieval and analysis processes – there is far too
much information to be entirely checked at once. Examples of problems that may arise,
and those we met during our experiences, include:

 When the project is not very active (e.g. typically at the beginning of the project),
one may ask for a day which has no revision attached to it. In this case, Subversion
simply failed to retrieve the content of the repository for that day, and we had to
manually extract code at the previous revision.

 When a data provider tool fails (e.g. an exception occurs because of some strange
character or an unusal code construction) then all findings delivered by this tool are
unavailable for the specific version. This may be a silent error, and the only way to
identify it is to check for semantic consistency of data (say, 0 instead of 8 on some
columns).

Some errors can be detected via automatic treatments (e.g. sum up all metrics delivered
by a tool and check it is not null) while others must be manually checked to be uncovered.

7http://sourceforge.net/p/checkstyle/bugs/milestone/release_5.0/.
8http://sourceforge.net/p/pmd/bugs/milestone/PMD-5.0.5/.
9https://bugs.r-project.org/bugzilla3/buglist.cgi?version=R%203.0.1.

10https://github.com/yihui/knitr/issues.

88

http://sourceforge.net/p/checkstyle/bugs/milestone/release_5.0/
http://sourceforge.net/p/pmd/bugs/milestone/PMD-5.0.5/
https://bugs.r-project.org/bugzilla3/buglist.cgi?version=R%203.0.1
https://github.com/yihui/knitr/issues

It is not always easy to check for the validity of measures, however: double-checking the
total number of possible execution paths in a huge file may be impossible to reproduce
exactly. Unable to formally verify the information, one should still validate that the data
at least looks ok.

Publishing the data sets is an opportunity to get feedback from other people: some
errors may be easily caught (e.g. a failing data provider results in a null column in the
data set) while other errors may look fine until someone with a specific knowledge or
need can highlight them. In other words, many eyes will see more potential problems, as
spotted by E. Raymond in [148] for open-source projects.

“ Given a large enough beta-tester and co-developer
base, almost every problem will be characterized quickly
and the fix will be obvious to someone. ”

Erick S. Raymond

4.5 Summary & Roadmap

This preliminary step was useful in laying down solid foundations for the upcoming steps
of the Maisqual project. It allowed us to better know the data we were going to analyse,
what algorithms could be applied to it, and moreover how to treat this information. From
there we designed the roadmap depicted in figure 4.11, and the following clear objectives
were decided:

Figure 4.11: Synopsis of the Maisqual roadmap.

89

Produce data sets to allow reproducible research and maintain a secure consistency
between versions of analysis document. Readily available data sets also provide
en easy means to quickly test new techniques without having to re-check data
for consistency or completeness. The introduction of new data types (e.g. from
configuration management tools) permits us to easily investigate new areas for the
quality models provided in the Squore configuration.

Write rough Knitr documents to select and test the statistical methods that can be
used on software engineering data and generic concerns, and more generally try a
lot of ideas without much difficulty. This was achieved through the project analysis
version and evolution working documents, which provided useful insights on the
applicability of techniques and served as a basis for future work.

Write optimised Knitr documents targeted at specific techniques and concerns, like
outliers detection or automatic scales for Squore. These usually start as simple
extracts of the generic document, which are then enhanced. They run faster (since
all unnecessary elements have been removed from them), are more reliable (issues
not related to the very concerns of the document are wiped out) and are more
focused and user-friendly, with a helpful and textual description of the context and
goals of the document.

Implement the solution to make it available to users: a genius idea is worthless if no
one uses it. It should either be integrated into Squore or made available in order
to benefit from it.

90

Chapter 5

First stones: building the project

After learning the basic concepts and issues of software engineering data mining, we drew
a plan to fulfill our goals. Clear requirements were established in a new roadmap shown
in section 4.5. This chapter describes how the Maisqual project was modified after these
experiences and how the precepts uncovered in the previous chapter were implemented in
Maisqual.

Here we describe how we investigated the nature of software engineering data and
established a typical topology of artefacts in section 5.1. The methodological approach
we decided to apply is explained in section 5.2. Section 5.3 describes how the process was
designed, implemented and automated on a dedicated server and executed to generate
the data sets and analyses.

5.1 Topology of a software project

5.1.1 The big picture

Repositories hold all of the assets and information available for a software project,
from code to review reports and discussions. In the mining process it is necessary
to find a common basis of mandatory repositories and measures for all projects to be
analysed: e.g. configuration management, change management (bugs and change requests),
communication (e.g. forums or mailing lists) and publication (website, wiki). Figure 5.1
shows repositories that can be typically defined for a software project and examples of
metrics that can be retrieved from them.

It is useful to retrieve measures at different time frames (e.g. yesterday, last week, last
month, last three months) to better grasp the dynamics of the information. Evolution is
an important aspect of the analysis since it allows users to understand the link between
measures, practices and quality attributes. It also makes them realise how much better or
worse they do with time.

91

Figure 5.1: Software repositories and examples of metrics extracted.

5.1.2 Artefact Types

Artefacts are all items than can be retrieved from a software repository or source of data
and has some information associated with it. In the context of software development a
variety of different artefacts may be defined depending on the purpose of the search activity.
Most evident examples of types are related to the product (source code, documentation),
communication, or process.

At the product level, data attributes are usually software metrics and findings, attached
to artefact types of the following:

Application An application is the set of files considered as a release. It is useful in
a portfolio perspective to compare projects, and to track the evolution of some
characteristics of the project over time. It can be built up from pure application-
level metrics (e.g. the number of commits) or from the aggregation of lower-level
measures1.

Folder A folder is associated to a directory on the file system. For the Java language,
it is also equivalent to a package. Folders are useful for mapping and highlighting
parts of the software design that have common or remarkable characteristics: e.g.
components or plugins.

File A file belongs to the repository source hierarchy and may contain declarations,
classes, functions, instructions, or even comments only. Most analysers only consider
files with an extension matching the language under analysis.

Class A class can either be the main class from the file, or an anonymous type – see
section 4.4.3 for the latter. In object-oriented architectures code reusability is mostly

1When building up an attribute from lower-level measures, one has to pay attention to ecological
inference, see section 2.2.1.

92

Figure 5.2: Different artefacts models for different uses.

achieved at the class level, so quality characteristics that involve reusability will
often use a class-level index.

Function – or methods in the case of a class – are most useful to developpers to identify
where findings are located (most violation detection tools provide the line as well).

In the data sets we generated the artefact types defined are application, file and
function. A collection of information is attached to each artefact, corresponding to the
file columns and extracted from different sources (static code analysis, tools metadata,
mailing lists).

But as it is in the case for a measurement program, goals are the very drivers for the
selection of an artefact. If one considers the activity of a repository, then considering
commits as artefacts is probably the best guess. The architecture used to model the
system under measurement has a great impact on the artefacts selected as well: the
decomposition will differ depending on the quality characteristics one wants to measure
and manage, as figure 5.2 illustrates it.

At the process level, many other types of artefacts can be defined. Most of them
are attached to an application, since people and practices are usually considered at the
organisation or project level. We provide below a few examples of possible artefact types.

Bugs contain a wealth of diverse information, including insights on product reliability and
project activity, among others. Tools can often be queried through a documented API.
Some examples of attributes that can be retrieved from there are the total volume
of issues, ratio of issues rejected, the time for a bug to be taken in consideration or
to be resolved.

Requirements are sometimes managed as features within the change request tracker.
Agile projects often use it to define the contents of the sprint (iteration). Examples
of information that can be identified from there are: the scope of release, progress
of work for the next release, or requirements stability.

Web site The project’s official web site is the main communication means towards the
public: it may propose a description of the project, its goals and features, or means
to join the project. These can be retrieved as boolean measures for the assessment

93

of the project’s communication management. It also holds information about the
project’s organisation and roadmap: plannified release dates2, frequency of news
postings or edits.

Wiki A wiki is a user-edited place to share information about the project and tells a lot
about community activity. Examples of attributes that can be retrieved from it are
the number of different editors, daily edits, or stability (ratio of number of edited
pages by total number of pages).

People can be considered as artefacts in the case of social science investigations. But
this may be considered bad practice if the measure is liable to be used as a performance
indicator. One has to pay attention to the Hawthorn effect (see section 2.2.1) as well
when involving people in the measurement process.

5.1.3 Source code

Source code is generally extracted from the configuration management repository at a
specific date and for a specific version (or branch) of the product. Source releases as
published by open source projects can be used as well but may heavily differ from direct
extracts, because they represent a subset of the full project repository and may have been
modified during the release process.

Sources files usually includes source files, and tests. Some practitionners advocate
that tests should not be included in analysis since they are not a part of the delivered
product. We argue this is often due to management and productivity considerations to
artificially reduce technical debt or maintenance costs; our belief is that test code has to
be maintained as well and therefore needs quality assessment.

Source code analysis [128] tools usually provide metrics and findings. Metrics target
intrinsic characteristics of the code, like its size or the number of nested loops. Findings
are occurrences of non-conformities to some standard rules or good practices.

Static analysis tools like Squore [11], Checkstyle [32] or PMD [51, 183] check for
anti-patterns or violations of conventions, and thus provide valuable information on
acquired development practices [183]. Dynamic analysis tools like FindBugs [8, 183, 181]
or Polyspace give more information on the product performance and behaviour [57, 170],
but need compiled, executable products – which is difficult to achieve automatically on a
large scale. Dynamic and static analysis are complementary techniques on completeness,
scope, and precision [17].

5.1.4 Configuration management

A configuration management system allows to record and restitute all changes on versioned
artefacts, with some useful information about who did it, when, and (to some extent) why.
It brings useful information on artefacts’ successive modifications and on the activity and
diversity of actors in the project.

2When it comes to time-related information, delays are easier to use as measures than dates.

94

The primary source of data is the verbose log of the repository branch or trunk, as
provided in various formats by all configuration management tools. The interpretation
of metrics depends considerably on the configuration management tool in use and its
associated workflow: as an example, commits on a centralised subversion repository do
not have the same meaning as on a Git distributed repository because of the branching
system and philosophy. A Subversion repository with hundreds of branches is probably
the sign of a bad usage of the branching system, while it can be considered normal with
Git. In such a context it may be useful to setup some scales to adapt ranges and compare
tools together. The positioning of the analysis in the configuration management branches
also influences its meaning: working on maintenance-only branches (i.e. with many bug
fixes and few new features) or on the trunk (next release, with mainly new features and
potentially large refactoring or big-bang changes) does not yield the same results.

Examples of metrics that can be gathered from there are the number of commits,
committers or fix-related commits on a given period of time.

5.1.5 Change management

A tracker, or bug tracking system, allows to record any type of items with a defined set of
associated attributes. They are typically used to track bugs and enhancements requests,
but may as well be used for requirements or support requests. The comments posted on
issues offer a plethora of useful information regarding the bug itself and people’s behaviour;
some studies even treat them as a communication channel.

Figure 5.3: Mapping of bug tracking processes.

A bias may be introduced by different tools and workflows, or even different interpre-
tations of the same status. Hemmati et al. [86] warns that due to the variety of different
processes, only closed and fixed issues may provide safe measures. A common work-around

95

is to map actual states to a minimalist set of useful canonical states: e.g. open, working,
verifying, closed. Almost all life cycles can be mapped to these simple steps without
twisting them too much. Figure 5.3 shows a few examples of mapping to real-world bug
tracking workflows: the one used at Squoring Technologies and the default lifecycle
proposed by the Eclipse foundation for the projects.

Examples of metrics that can be retrieved from change management systems include
the time to closure, number of comments, or votes, depending on the system’s features.

5.1.6 Communication

Actors of a software project need to communicate to coordinate efforts, ensure some
consistency in coding practices, or simply get help [148]. This communication may
flow through different channels: mailing lists, forums, or news servers. Every project is
supposed to have at least two communication media, one for contributors to exchange on
the product development (the developers mailing list) and another one for the product
usage (the users mailing list).

Local customs may impact the analysis of communication channels. In some cases
low-activity projects send commits or bugs notification to the developer mailing list
as a convenience to follow repository activity, or contributors may use different email
addresses or logins when posting – which makes it difficult, if not impossible, to link their
communications to activity in other repositories. The different communication media
can all be parsed to retrieve a common set of metrics like the number of threads, mails,
authors or response ratio, and time data like the median time to first response.

Another way to get historical information about project communications lies in mailing
lists archives, which are public web sites that archive and index for full-search all messages
for mailing lists of open-source projects. We list hereafter a few of them:

 Gmane: http://gmane.org
 Nabble: http://nabble.org
 The Mail Archive: http://www.mail-archive.com
 MarkMail: http://markmail.org

5.1.7 Publication

A project has to make the final product available to its users along with a number of
artefacts such as documentation, FAQ or How-to’s, or project-related information like
team members, history of the project or advancement of the next release. A user-edited
wiki is a more sophisticated communication channel often used by open source projects.
The analysis of these repositories may be difficult because of the variety of publishing
engines available: some of them display the time of last modification and who did it, while
other projects use static pages with almost no associated meta data. As an example user-
edited wikis are quite easy to parse because they display a whole bouquet of information

96

http://gmane.org
http://nabble.org
http://www.mail-archive.com
http://markmail.org

about their history, but may be very time-consuming to parse because of their intrinsic
changeability.

Metrics that can be gathered from these repositories are commonly linked to the
product documentation and community wealth characteristics. Examples include the
number of pages, recent modifications or entries in the FAQ, the number of different
authors and readers, or the age of entries (which may denote obsolete pages).

5.2 An approach for data mining

As highlighted in our state of the art, one has to pay great attention to the approach used
in the measurement or mining process to ensure consistency and meaning of the measures.
Besides relying on the experience of software measurement programs and meaning-safe
methods, we propose a few guidelines to be followed when building up a data mining
process. They are summarised in figure 5.4.

Figure 5.4: From quality definition to repository metrics.

We applied them on the few experiences we had during the Maisqual project and
found them practical and useful. These proved to be successful in ensuring the integrity
and usability of information and keeping all the actors synchronised on the same concerns
and solutions.

5.2.1 Declare the intent

The whole mining process is driven by its stated goals. The quality model and attributes,
means to measure it, and presentation of the results will differ if the program is designed

97

as an audit-like, acceptance test for projects, or as an incremental quality improvement
program to ease evolution and maintenance of projects. The users of the mining program,
who may be developers, managers, buyers, or end-users of the product, have to map its
objectives to concepts and needs they are familiar with. Including users in the definition
of the intent of the program also helps to prevent counter-productive use of the metrics
and quality models.

The intent must be simple, clearly expressed in a few sentences, and published for all
considered users of the program.

5.2.2 Identify quality attributes

The concerns identified in the intent are then decomposed into quality attributes. Firstly
this gives a structure to the quality model, and secondly allows to rely on well-defined
characteristics – which greatly simplifies the communication and exchange of views.
Recognised standards and established practices provide useful frameworks and definitions
for this step. One should strive for simplicity when elaborating quality attributes and
concepts. Common sense is a good argument, and even actors that have no knowledge of
the field associated to the quality attributes should be able to understand them. Obscurity
is a source of fear and distrust and must be avoided.

The output of this step is a fully-featured quality model that reflects all of the expected
needs and views of the mining program. The produced quality model is also a point of
convergence for all actors: requirements of different origin and nature are bound together
and form a unified, consistent view.

5.2.3 Identify available metrics

Once we precisely known what quality characteristics we are looking for, we have to
identify measures that reflect this information need. Data retrieval is a fragile step of
the mining process. Depending on the information we are looking for, various artefact
types and measures may be available: one has to select them carefully according to their
intended purpose. The different repositories available for the projects being analysed
should be listed, with the measures that may be retrieved from them. Selected metrics
have to be stable and reliable (i.e. their meaning to users must remain constant over time
and usage), and their retrieval automated (i.e. no human intervention is required).

This step also defines how the metrics are aggregated up to the top quality character-
istics. Since there is no universally recognised agreement on these relationships one has to
rely on local understanding and conventions. All actors, or at least a vast majority of
them, should agree on the meaning of the selected metrics and the links to the quality
attributes.

98

5.2.4 Implementation

The mining process must be fully automated, from data retrieval to results presentation,
and transparently published. Automation enables to reliably and regularly collect the
information, even when people are not available3 or not willing to do it4. When digging
back into historical records, missing data poses a serious threat to the consistency of
results and to the algorithms used to analyse them – information is often easier to get
at the moment than later on. The publishing of the entire process also helps people
understand what quality is in this context and how it is measured (i.e. no magic), making
them more confident in the process.

5.2.5 Presentation of results

Visualisation of results is of primary importance for the efficiency of the information we
want to transmit. In some cases (e.g. for incremental improvement of quality) a short list
of action items will be enough because the human mind feels more comfortable correcting
a few warnings than hundreds of them. But if our goal is to audit the technical debt of the
product, it would be better to list them all to get a good idea of the actual status of the
product’s maintainability. Pictures and plots also show to be very useful to illustrate ideas
and are sometimes worth a thousand words. If we want to highlight unstable files, a plot
showing the number of recent modifications would immediately spot the most unstable of
them and show how much volatile they are compared to the average.

5.3 Implementation

5.3.1 Selected tools

Besides the tools used by the software project themselves (e.g. Subversion, Git,
MHonArc..), we had to select tools to setup and automate the retrieval and analy-
sis process. We naturally relied on Squore for the static analysis part, and on a set
of open-source tools commonly used by free/libre projects. This has two advantages:
firstly they can be downloaded and used for free, and secondly they provide well-known
features, checks, and results. As an example on static analysis tools, since we restricted
our study to Java projects selected tools for bad practices and violations detections have
been Checkstyle and PMD. Practitioners using the generated data sets will be able to
investigate e.g. how the checks are implemented and map them to documented practices
they know or have seen in projects.

3Nobody has time for data retrieval before a release or during holidays.
4Kaner cites in [105] the interesting case of testers waiting for the release before submitting new bugs,

pinning them on the wall for the time being.

99

Checkstyle

Checkstyle is an open-source static code analyser that checks for violations of style and
naming rules in Java files. It was originally developed by Oliver Burn back in 2001, mainly
to check code layout issues, but since the architecture refactoring that occured in version 3
many new types of checks have been added. As of today, Checkstyle provides a few checks
to find class design problems, duplicate code, or bug patterns like double checked locking.

The open-source community has widely adopted Checkstyle: many projects propose
a Checkstyle configuration file to ensure consistency of the practices in use. Checkstyle
checks can be seamlessly integrated in the development process of projects through several
integrations with common tools used in Java like Ant, Maven, Jenkins, Eclipse, Emacs or
Vim.

It offers a comprehensive set of built-in rules, and allows to easily define new custom
checks. The types of checks available out-of-the-box include coding style checks, that target
code layout and structure conformance to established standards, or naming conventions
checks for generic or custom naming of artefacts.

When we started to work on Maisqual, we used Checkstyle 5.5, which was the latest
version at that time and the one supported by the Squore engine. The 5.6 version has
since been released, introducing new checks and fixing various bugs, and Squore adopted
it in the 2013-B release. Version 3.0 of the data sets has been generated with Checkstyle
5.6 and some of the rules checked are described in section 6.2.3.

PMD

PMD is another static code analyzer commonly used in open-source projects to detect bad
programming practices. It finds common Java programming flaws like unused variables,
empty catch blocks, unnecessary object creation, among others. Its main target is Java,
although some rules target other languages like JavaScript, XML, and XSL. It also
integrates with various common Java tools, including Ant, Maven, Jenkins, Eclipse, and
editors like Emacs JDE and Vim.

Compared to Checkstyle’s, PMD checks are rather oriented towards design issues
and bad coding practices. Examples include dead code, exception handling, or direct
implementations instead of using interfaces.

The version of PMD included in Squore at the beginning of the project was PMD
4.3. As for Checkstyle, we switched to PMD 5.0.5 for the generation of version 3.0 of the
data sets. Some of the rules checked are described in section 6.2.4.

Squore

To ensure consistency between all artefact measures retrieved from different sources, we
relied on Squore, a professional tool for software project quality evaluation and business
intelligence [11]. It features a parser, which computes code metrics and builds a tree of

100

artefacts for the various data providers. The engine then associates measures to each
node, aggregates data to upper levels, and stores them in a Postgres database.

Squore has two features that proved to be useful
for our purpose. Firstly, the input to the engine can
be any type of information or format; as an example
we could write specific data providers to analyse
configuration management metadata and to retrieve
communication channels information through vari-
ous means (Forums, NNTP, MBoxes). Secondly the aggregation of data as well as the
measures and scales used can be entirely configured in custom quality models. A quality
model defines a hierarchy of quality attributes and links them to metrics. Findings from
rule checking tools are integrated through derived metrics like the number of violations of
rule X on this artefact.

We used the Squore dashboard to quickly verify measures as they were retrieved,
with temporal plots and tables as picture in figure 5.5.

Figure 5.5: Validation of data in the Squore dashboard.

5.3.2 Data retrieval

Figure 5.6 depicts the whole process: metrics are retrieved from source code with the
Squore parser and external tools (Checkstyle, PMD) while configuration management
metadata and mailing lists are dug with custom data providers written in Perl. Once
Squore has finished aggregating the different sources of information, we retrieve them
from the database to generate the CSV files. Data can be checked visually in the Squore
dashboard and is validated through R/Knitr scripts.

101

Figure 5.6: Data retrieval process.

Source code

Source code is extracted from cvs, subversion or git repositories at specific dates. We had
to check exported snapshots manually and to correct them when needed: some dates were
missing (e.g. when there is no commit at the specified date), or incomplete (e.g. when
the remote server cuts bandwidth to preserve resources).

Using Subversion one can use the export command to directly fetch the contents of
the repository at a specific date:

1 svn export http://svn.apache.org/repos/asf/ant/core/trunk −r {2000−02−21}

Using Git one has first to clone the repository, then reset it to the commit corresponding
to the desired date. The Git-specific directories (namely .git and .gitignore) can then
safely be deleted to preserve disk space:

1 git clone https://git.eclipse.org/r/p/mylyn/org.eclipse.mylyn.git
2 git reset −−hard $(git rev−list −1 $(git rev−parse −−until=${i}) master)
3 rm −rf .git .gitignore

Releases were manually downloaded from the project web site, and extracted to the
sources directory5. It should be noted that releases versioning may be discontinuous (e.g.
jumping from 1.2.1 to 1.2.3); this might happen when a critical bug is found after the
release process has been started (i.e. sources have been tagged) but before the publishing
has occured. In these cases the next version usually gets out within a few days.

Configuration management metadata

Basically all configuration management systems implement the same core functionalities
– e.g. checkout, commits or revisions, history or log of artefacts. Although some tools
provide supplemental kinds of information (e.g. a reliable link to the change requests
associated with the commit) there is a common basis of meta data that is available from

5The full set of sources takes up to 300GB of disk space.

102

all decent modern tools. The basic information we want to retrieve is the author, date
and reason (message) of each commit that occured at the file and application levels. We
retrieve this information with the following command:

Using Subversion:

1 svn log −v −−xml http://svn.apache.org/repos/asf/ant/core/ > ant_log.xml

Using Git:

1 git log −−stat=4096 −− . > git_log.txt

We defined in our context a fix-related commit as having one of the terms fix, bug,
issue or error in the message associated with the revision. Depending on the project
tooling and conventions, more sophisticated methods may be set up to establish the link
between bugs and commits [9].

We could not observe consistent naming practices for commit messages across the
different projects and forges that we mined. Some projects published guidelines or
explicitely relied on more generic conventions like the official Java Coding Convention
while some others did not even mention it. None of them enforced these practices however,
e.g. by setting up pre-commit hooks on the repository.

5.3.3 Data analysis

The main place for trying things out was the version analysis Knitr document. It
steadily evolved to include new techniques and graphics and is now 85 pages. Sections
that were too time-consuming or not robust enough were shut down when needed. Specific
Knitr documents were written to address

5.3.4 Automation

We used Jenkins as a continuous integration server to automate the different processes.
Basically put, it allows to define sequential steps and schedule long runs in an automated,
repeatable manner. It integrates well with a lot of useful third-party components: build
tools, configuration management and bug tracking systems, and can be finely tuned to fit
the most extravagant processes.

One useful feature of Jenkins is it enables one to configure template projects of which
the steps can be reused by other projects as illustrated in figure 5.7. We defined a few
common jobs for the analysis of an arbitrary single version, a series of successive extracts,
and the current state of a project. Project-specific jobs were then setup that would run
the steps defined in the templates with customised values.

The Jenkins process hosts all processes executed during the analysis of a project,
from the Checkstyle, PMD and Squore parser to the R analyses, and consumes a lot of
resources. The generated builds take 45 GB of disk space while the Jenkins workspace

103

Figure 5.7: Implementation of the retrieval process in Jenkins.

takes up to 145 GB. It runs on a fairly good server6 which has eight processors and 24
GB of RAM.

5.4 Summary

In this chapter we defined the building blocks of Maisqual. We ascertained the structure
of available information sources and delineated a nominal topology for the projects we
intended to analyse. From a methodological perspective, we instituted requirements to
ensure the relevance and semantic consistancy of our results and eventually developed
the requirements on a dedicated server. This provided us with a strong framework upon
which to build reproducible and theoretically sound research.

The work accomplished during this preparation step has also benefited Squoring
Technologies in the following areas:

 The dedicated data providers developed for the acquisition of unusual data have
uncovered new areas for the Squore product. The configuration management
metadata extraction of application- and file-level measures is already integrated in
the Squore repository. The preparation work for other areas (change requests,
communication means, and other process-related sources) provides a sound premise
for upcoming data providers.

 The application of state of the art research, the pitfalls and common issues identified
during the retrieval and analysis process, and the techniques used to detect and defeat
them, also contributed to the Squoring Technologies knowledge and experience.
This proved to be useful for investigating paths for the project quality assessment
initiative of the Squore product, and to widen the scientific level of knowledge of
the teams.

6The server is hosted by ovh at http://ns228394.ovh.net. The Jenkins instance can be accessed at
http://ns228394.ovh.net:8080 and the Squore instance can be accessed at http://ns228394.ovh.
bet:8180

104

http://ns228394.ovh.net
http://ns228394.ovh.net:8080
http://ns228394.ovh.bet:8180
http://ns228394.ovh.bet:8180

Chapter 6

Generating the data sets

This chapter introduces the data sets that were generated for the Squore Labs using the
framework setup in chapter 5. The data sets produced during this phase have different
structures and characteristics. Hence three different types of sets are defined:

 Evolution data sets show a weekly snapshot of the project repository over a long
period of time – up to 12 years, in the case of Ant. The time interval between extracts
is constant: the source has been extracted every Monday over the defined period of
time. Characteristics include common and differential code metrics, communication
measures, and configuration management measures.

 Release data sets show analyses of the source releases of the software product, as
published by the project. They differ from the evolution data sets in their nature
(the source release does not necessarily show the same structure and contents as
the project repository) and in time structure (releases show no time structure: a
new release may happen only a few day after the previous one – e.g. in the case of
blocking issues, or months after).

 Version data sets present information on a single release or extract of a product.
They include only static information: all time-dependent attributes are discarded,
but they still provide valuable insights into the intrinsic measures and detected
practices.

We first detail in section 6.1 the metrics selected for extraction. We give a short
description for each metric and provide pragmatic examples to serve as requirements for
reproducible research. The rules and practices checked on source code are then presented
in section 6.2. Some of the major projects that we analysed are quickly described in
section 6.3 to provide insights on their context and history. Finally section 6.4 summarises
the different types of data sets that were generated.

105

6.1 Defining metrics

6.1.1 About metrics

The definition of metrics is an important step for the comprehension and the consistency
of the measurement program, as pointed out by Fenton [62] and Kaner [105]. Their
arguments can be summarised in as follows:

 The exact definition of the measurement process and how to retrieve the information
reliably. A common example proposed by Kaner in [105] is the Mean Time Between
Failures (mtbf) metric. This point is maintained both at the retrieval stage (is
the actual measure really the information we intended to get?) and at the analysis
phase (how do people understand and use the definition of the measure?).

 The meaning and interpretation of measures, which vary greatly according to the
development process, local practices and the program objectives. Compared to the
previous case, even if a measure signifies exactly what was intended, its implications
will not be the same according to the external and internal context of the project.
As an example, developers working in a collaborative open-source project will not
have the same productivity and hierarchical constraints as a private company with
financial and time constraints [148].

To circumvent these pitfalls, we paid great attention to:

 Clearly define the metrics to be comprehended by everyone.
 Provide examples of values for a given chunk of code.
 Give context and some indications and common beliefs about the metric’s usage.

Giving code samples with values of metrics serves both for understandability and as
a reference. On the one hand, one is able to get an approximate idea for the values of
metrics on a sample of code structures and try her understanding on real code. On the
other hand, these samples can be used as requirements for a custom development if needed
for reasons of reproducibility.

Some metrics are only available for specific contexts, like the number of classes for
object-oriented programming. Metrics available for each type of data set are described
in table 6.1. OO metrics are clas (number of classes defined in the artefact) and ditm
(Depth of Inheritance Tree). Diff metrics are ladd, lmod, lrem (Number of lines added,
modified and removed since the last analysis). Time metrics for SCM are scm_*_1w,
scm_*_1m, and scm_*_3m. Total metrics for SCM are scm_commits_total,
scm_committers_total, scm_commits_files_total and scm_fixes_total.
Time metrics for Communication are com_*_1w, com_*_1m, and com_*_3m.

Metrics defined on a lower level (e.g. function) can be aggregated to upper level in
a smart manner: as an example, the cyclomatic number at the file level is the overall
sum of its function’s cyclomatic numbers. The meaning of the upper-level metric shall
be interpreted with this fact in mind, since it may introduce a bias (also known as the

106

Table 6.1: Metrics artefact types.

Code SCM COM
Common OO Diff. Total Time Time

Java Evolution X X X X X X
Java Releases X X X X
Java Versions X X X
C Evolution X X X X X
C Releases X X X
C Versions X X

Ecological fallacy, cf. section 2.2.1). When needed, the smart manner used to aggregate
information at upper levels is described hereafter.

All data sets are structured in three files, corresponding to the different artefact types
that were investigated: application, file and function. The artefact levels available for
each metric are detailed in their own sections: tables 6.2 and 6.3 for code metrics, table
6.4 for configuration management metrics, and table 6.5 for communication metrics.

6.1.2 Code metrics

We present in table 6.2 the code metrics that are available in all data sets, with the
artefact levels they are available at.

Artefact counting metrics

Artefact counting metrics are file, func and clas (which is defined in the section
dedicated to object-oriented measures). The number of files (file) counts the number
of source files in the project, i.e. which have an extension corresponding to the defined
language (.java for Java or .c and .h files for C). The number of functions (func)
sums up the number of methods or functions recursively defined in the artefact.

Line counting metrics

Line counting metrics propose a variety of different means to grasp the size of code from
different perspectives. It includes stat, sloc, eloc, cloc, mloc, and brac.

The number of statements (stat) counts the total number of instructions. Examples
of instructions include control-flow tokens, plus else, cases, and assignments.

Source lines of code (sloc) is the number of non-blank and non-comment lines in
code. Effective lines of code (eloc) also removes the number of lines that contain
only braces.

Comment lines of code (cloc) counts the number of lines that include a comment
in the artefact. If a line includes both code and comment, it will be counted in sloc,
cloc and mloc metrics.

107

Table 6.2: Artefact types for common code metrics.

Artefact counting metrics Mnemo App File Func.
Number of files file X
Number of functions func X X
Line counting metrics Mnemo App File Func.
Lines of braces brac X X X
Blank lines blan X X X
Effective lines of code eloc X X X
Source lines of code sloc X X X
Line count lc X X X
Mixed lines of code mloc X X X
Comment lines of code cloc X X X
Miscellaneous Mnemo App File Func.
Non conformities count ncc X X X
Comment rate comr X X X
Number of statements stat X X X
Control flow complexity metrics Mnemo App File Func.
Maximum nesting level nest X
Number of Paths npat X
Cyclomatic number vg X X X
Control flow tokens cft X X X
Halstead metrics Mnemo App File Func.
Total number of operators topt X
Number of distinct operators dopt X
Total number of operand topd X
Number of distinct operands dopd X

Mixed lines of code (mloc) counts the number of lines that have both code and
comments, and braces (brac) counts the number of lines that contain only braces. In
this context, we have the following relationships:

sloc = eloc + brac

lc = sloc + blan + cloc−mloc

lc = (eloc + brac) + blan + cloc−mloccomr = ((cloc + mloc)× 100)/(eloc + cloc))

The following examples of line counting metrics are provided for reference. The
forceLoadClass function has 10 lines (lc), 8 source lines of code (sloc), 6 effective lines
of code (eloc), 2 blank lines (blan), and 0 comment lines of code (cloc).

108

1 public Class forceLoadClass(String classname) throws ClassNotFoundException {
2 log("force␣loading␣" + classname, Project.MSG_DEBUG);
3

4 Class theClass = findLoadedClass(classname);
5

6 if (theClass == null) {
7 theClass = findClass(classname);
8 }
9 return theClass;

10 }

The findClassInComponents function has 30 lines (lc), 27 source lines of code (sloc),
21 effective lines of code (eloc), 0 blank line (blan), 3 comment lines of code (cloc), 0
mixed lines of code (mloc), and 5 lines of braces (brac).

1 private Class findClassInComponents(String name)
2 throws ClassNotFoundException {
3 // we need to search the components of the path to see if
4 // we can find the class we want.
5 InputStream stream = null;
6 String classFilename = getClassFilename(name);
7 try {
8 Enumeration e = pathComponents.elements();
9 while (e.hasMoreElements()) {

10 File pathComponent = (File) e.nextElement();
11 try {
12 stream = getResourceStream(pathComponent, classFilename);
13 if (stream != null) {
14 log("Loaded␣from␣" + pathComponent + "␣"
15 + classFilename, Project.MSG_DEBUG);
16 return getClassFromStream(stream, name, pathComponent);
17 }
18 } catch (SecurityException se) {
19 throw se;
20 } catch (IOException ioe) {
21 // ioe.printStackTrace();
22 log("Exception␣reading␣component␣" + pathComponent + "␣(reason:␣"
23 + ioe.getMessage() + ")", Project.MSG_VERBOSE);
24 }
25 }
26 throw new ClassNotFoundException(name);
27 } finally {
28 FileUtils.close(stream);

109

29 }
30 }

Control flow complexity metrics

The maximum nesting level (nest) counts the highest number of imbricated code
(including conditions and loops) in a function. Deeper nesting threatens understandability
of code and induces more test cases to run the different branches. Practitioners usually
consider that a function with three or more nested levels becomes significantly more
difficult for the human mind to apprehend how it works.

The number of execution paths (npat) is an estimate of the possible execution
paths in a function. Higher values induce more test cases to test all possible ways the
function can execute depending on its parameters. An infinite number of execution paths
typically indicates that some combination of parameters may cause an infinite loop during
execution.

The cyclomatic number (vg), a measure borrowed from graph theory and introduced
by McCabe in [130] is the number of linearly independent paths that comprise the program.
To have good testability and maintainability, McCabe recommends that no program
modules (or functions as for Java) should exceed a cyclomatic number of 10. It is primarily
defined at the function level and is summed up for higher levels of artefacts.

The number of control-flow tokens (cft) counts the number of control-flow
oriented operators (e.g. if, while, for, switch, throw, return, ternary operators, blocks
of execution). else and case are typically considered a part of respectively if and switch
and are not counted.

The control flow graph of a function visually plots all paths available when executing
it. Examples of control flow are provided in figure 6.0; figures 6.0a and 6.0b shows two
Java examples on Ant (the code of these functions is reproduced in appendix D.1 page 279
for reference) and figure 6.0c shows a C example extracted from GCC. But control flows
can be a lot more complex, as exemplified in figure 6.0d for an industrial application.

In these examples, the functions have the following characteristics.

Metric (a) (b) (c)
Language Java Java C
Line Count 407 6 99
Source Lines of Code 337 6 95
Executable Statements 271 4 62
Cyclomatic Complexity 78 2 18
Maximum Nested Structures 7 1 5
Non-Cyclic Paths inf 2 68
Comment rate 9 % 0 % 4 %

110

(a) Ant Javadoc.java/execute() (b) Ant Javadoc.java/createSourcepath()

(c) GCC GC_make_array_descriptor() (d) Control flow examples

Figure 6.0: Control flow examples

Halstead metrics

Halstead proposed in his Elements of Software Science [82] a set of metrics to estimate
some important characteristics of a software. He starts by defining 4 base measures: the
number of distinct operands (dopd, or n2), the number of distinct operators
(dopt, or n1), and the total number of operands (topd, or N2) and the total number
of operators (topt, or N1). Together they constitute the following higher-level derived
metrics:

 program vocabulary: n = n1 + n2,
 program length: N = N1 +N2,

 program difficulty: D =
n1

2
× N2

n2

,

 program volume: V = N log2 n,
 estimated effort needed for program comprehension: E = D × V ,

 estimated number of delivered bugs: B =
E2/3

3000
.

In the data sets, only the four base measures are retrieved: dopd, dopt, topd, and
topt. Derived measures are not provided in the data sets since they can all be computed
from the provided base measures.

111

Rules-oriented measures

ncc is the number of non-conformities detected on an artefact. From the practices
perspective, it sums the number of times any rule has been transgressed on the artefact
(application, file or function). The rate of acquired practices (rokr) is the number
of respected rules (i.e. with no violation detected on the artefact) divided by the total
number of rules defined for the run. It shows the number of acquired practices with
regards to the full rule set.

Specific code metrics

Table 6.3: Artefact types for specific code metrics.

Differential metrics Mnemo App File Func.
Lines added ladd X X X
Lines modified lmod X X X
Lines removed lrem X X X
Object-Oriented metrics Mnemo App File Func.
Maximum Depth of Inheritance Tree ditm X
Number of classes clas X X X
Rate of acquired rules rokr X X X

Differential measures

Differential measures are only available for evolution and release data sets. They quantify
the number of lines added (ladd), modified (lmod) or removed (lrem) since the
last analysis, be it a week (for evolution data sets) or a random delay between two releases
(which varies from one week to one year). They give an idea about the volume of changes
(either bug fixes or new features) that occured between two releases. In the case of large
refactoring, or between major releases, there may be a massive number of lines modified,
whereas only small increments may be displayed for more agile-like, often-released projects
(e.g. Jenkins). As shown in table 6.3 differential measures are available at all artefact
levels: application, file, function.

Object-oriented measures

Three measures are only available for object-oriented code. They are the number of classes
(clas), the maximum depth of inheritance tree (ditm), and the above-mentionned rate
of acquired rules (rokr). Table 6.2 lists the artefact levels available for these metrics.

The number of classes sums up the number of classes defined in the artefact and its
sub-defined artefacts. One file may include several classes, and in Java anonymous classes
may be included in functions. The maximum depth of inheritance tree of a class

112

within the inheritance hierarchy is defined as the maximum length from the considered
class to the root of the class hierarchy tree and is measured by the number of ancestor
classes. In cases involving multiple inheritance, the ditm is the maximum length from
the node to the root of the tree [161]. It is available solely at the application level.

A deep inheritance tree makes the understanding of the object-oriented architecture
difficult. Well structured OO systems have a forest of classes rather than one large
inheritance lattice. The deeper the class is within the hierarchy, the greater the number
of methods it is likely to inherit, making it more complex to predict its behavior and,
therefore, more fault-prone [77]. However, the deeper a particular tree is in a class, the
greater potential reuse of inherited methods [161].

rokr is another measure specific to object-oriented code, since it is computed relatively
to the full number of rules, including Java-related checks. In the case of C projects only
the Squore rules are checked, so it loses its meaning and is not generated.

6.1.3 Software Configuration Management metrics

Configuration management systems hold a number of meta-information about the modifi-
cations committed to the project repository. The following metrics are defined:

The number of commits (scm_commits) counts the commits registered by the
software configuration management tool for the artefact on the repository (either the
trunk or a branch). At the application level commits can concern any type of artefacts
(e.g. code, documentation, or web site). Commits can be executed for many different
purposes: e.g. add feature, fix bug, add comments, refactor, or even simply re-indent code.

The number of fixes (scm_fixes) counts the number of fix-related commits, i.e.
commits that include either the fix, issue, problem or error keywords in their message. At
the application level, all commits with these keywords in message are considered until
the date of analysis. At the file level, it represents the number of fix-related revisions
associated to the file. If a file is created while fixing code (i.e. its first version is associated
to a fix commit) the fix isn’t counted since the file cannot be considered responsible for a
problem that has been detected when it wasn’t there.

The number of distinct committers (scm_committers) is the total number
of different committers registered by the software configuration management tool on
the artefact. On the one hand, having less committers enforces cohesion, makes keeping
coding and naming conventions respected easier, and allows easy communication and quick
connection between developers. On the other hand, having a large number of committers
means the project is active; it attracts more talented developers and more eyes to look at
problems. The project has also better chances to be maintained over the years.

It should be noted that some practices may threaten the validity of this metric. As
an example occasional contributors may send their patches to official maintainers who
review it before integrating it in the repository. In such cases, the commit is executed by
the official committer, although the code has been originally modified by an anonymous
(at least for us) developer. Some core maintainers use a convention stating the name

113

or identifier of the contributor, but there is no established or enforced usage of such
conventions. Another point is that multiple online personas can cause individuals to be
represented as multiple people [86].

The number of files committed (scm_commit_files) is the number of files
associated to commits registered by the software configuration management tool. This
measure allows to identify big commits, which usually imply big changes in the code.

Table 6.4: Artefact types for configuration management.

Configuration management Mnemo: scm_ App. File Func.
SCM Fixes fixes X X
SCM Commits commits X X
SCM Committers committers X X
SCM Committed files committed_files X

To reflect recent activity on the repository, we retrieved measures both on a limited time
basis and on a global basis: in the last week (e.g. scm_commits_1w), in the last month
(e.g. scm_commits_1m), and in the last three months (e.g. scm_commits_3m),
and in total (e.g. scm_commits_total). Metrics available at the different levels of
artefacts are presented in table 6.4.

6.1.4 Communication metrics

Communication metrics show an unusual part of the project: people’s activity and
interactions during the elaboration of the product. Most software projects have two
communication media: one targeted at the internal development of the product, for
developers who actively contribute to the project by committing in the source repository,
testing the product, or finding bugs (a.k.a. developers mailing list); and one targeted at
end-users for general help and good use of the product (a.k.a. user mailing list).

The type of media varies across the different forges or projects: most of the time
mailing lists are used, with a web interface like MHonArc or mod_mbox. In some cases,
projects may use as well forums (especially for user-oriented communication) or NNTP
news servers, as for the Eclipse foundation projects. The variety of media and tools
makes it difficult to be extensive; however data providers can be written to map these
to the common mbox format. We wrote connectors for mboxes, MHonArc, GMane and
FUDForum (used by Eclipse). The following metrics are defined:

The number of posts (com_dev_vol, com_usr_vol) is the total number of
mails posted on the mailing list during the considered period of time. All posts are
counted, regardless of their depth (i.e. new posts or answers).

The number of distinct authors (com_dev_auth, com_usr_auth) is the
number of people having posted at least once on the mailing list during the considered
period of time. Authors are counted once even if they posted multiple times, based on
their email address.

114

The number of threads (com_dev_subj, com_usr_subj) is the number of
diffent subjects (i.e. a question and its responses) that have been posted on the mailing
list during the considered period of time. Subjects that are replies to other subjects are
not counted, even if the subject text is different.

The number of answers (com_dev_resp_vol, com_usr_resp_vol) is the
total number of replies to requests on the user mailing list during the considered period of
time. A message is considered as an answer if it is using the Reply-to header field. The
number of answers is often associated to the number of threads to compute the useful
response ratio metric.

The median time to first reply (com_dev_resp_time_med, com_usr_-
resp_time_med) is the number of seconds between a question (first post of a thread)
and the first response (second post of a thread) on the mailing list during the considered
period of time.

Table 6.5: Artefact types for communication channels.

Communication metrics Mnemo: com_ App File Func.
Dev Volume dev_vol X
Dev Subjects dev_subj X
Dev Authors dev_auth X
Dev Median response time dev_resp_time_med X
User Volume usr_vol X
User Subjects usr_subj X
User Authors usr_auth X
User Median response time usr_resp_time_med X

As for configuration management metrics, we worked on temporal measures to produce
measures for the last week, last month, and last three months. Communication metrics
are only available at the application level, as shown in table 6.5.

6.2 Defining rules and practices

6.2.1 About rules

Rules are associated to practices that have an impact on some characteristic of quality.
We list hereafter the rule checks that we decided to include in our data sets, with
information about their associated practices and further references. The categories defined
in the rule sets are mapped to the ISO 9126 decomposition of quality (analysability,
changeability, stability, testability, etc.) and to development concerns (programming
techniques, architecture, etc.).

Many of these rules can be linked to coding conventions published by standardisation

115

organisms like MISRA1 (the Motor Industry Software Reliability Association, which C
rule set is well spread) or CERT2 (Carnegie Mellon’s secure coding instance). They
usually give a ranking on the remediation cost and the severity of the rule. There are also
language-specific coding conventions, as is the case with Sun’s coding conventions for the
Java programming language [171].

There are 39 rules from Checkstyle, 58 rules from PMD, and 21 rules from Squore. We
define hereafter only a subset of them, corresponding to the most common and prejudicial
errors. In the data sets, conformity to rules is displayed as a number of violations of the
rule for the given artefact.

6.2.2 Squore

Squore rules apply to C, C++ and Java code. The following families of rules are defined:
fault tolerance (2 rules), analysability (7 rules), maturity (1 rule), stability (10 rules),
changeability (12 rules) and testability (13 rules). The most common checks are:

 No fall through (r_nofallthrough). There shall be no fall through the
next case in a switch statement. It threatens analysability of code (one may not
understand where execution goes through) and stability (one needs to modify existing
code to add a feature). It is related to rules Cert MSC17-C, Cert MSC18-CPP, Cert
MSC20-C and Misra-C (2004) 15-2.

 Compound if (r_compoundifelse). An if (expression) construct shall be
followed by a compound statement. The else keyword shall be followed by either a
compound statement, or another if statement. It is related to Misra-C (2004) rule
14.9.

 Final else (r_elsefinal). All if ... else if constructs shall be terminated
with an else clause. This impacts changeability, because developers can identify
quickly what is the default treatment, and fault tolerance because unseen cases are
caught. It is related to Misra-C (2004) rule 14.10.

 No multiple breaks (r_sglbrk). For any iteration statement there shall be at
most one break statement used for loop termination. It is related to Misra-C (2004)
rule 14.6 and impacts the analysability (developers will have trouble understanding
the control flow) and testability (more paths to test) of code.

 No goto (r_nogoto). Gotos are considered bad practice (Misra-C (2004)
rule 14.4) and may be hazardous (see CERT MSC35-CPP): they threaten the
analysability of code, because one needs to scroll through the file instead of following
a clear sequence of steps, and makes the test cases harder to write. Similarly, the
no backward goto (r_bwgoto) rule searches for goto operators that link to
code that lies before the goto. Backward gotos shall not be used. They shall be
rewritten using a loop instead.

1See the official MISRA web site at http://www.misra.org.uk/.
2See Carnegie Mellon’s web site: https://www.securecoding.cert.org.

116

https://www.securecoding.cert.org/confluence/display/seccode/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.securecoding.cert.org/confluence/display/cplusplus/MSC18-CPP.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.securecoding.cert.org/confluence/display/seccode/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block
https://www.securecoding.cert.org/confluence/display/seccode/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block
https://www.securecoding.cert.org/confluence/display/cplusplus/MSC35-CPP.+Do+not+use+goto+statement+to+take+control+inside+the+try+and+catch+blocks
http://www.misra.org.uk/
https://www.securecoding.cert.org

 No assignment in Boolean (r_noasginbool). Assignment operators shall not
be used in expressions that yield a boolean value. It is related to Cert EXP45-C,
Cert EXP19-CPP and Misra-C (2004) rule 13.1.

 No assignment in expressions without comparison (r_noasgcond). As-
signment operators shall not be used in expressions that do not contain comparison
operators.

 Case in switch (r_onecase). Every switch statement shall have at least one
case clause. It is releated to Misra-C (2004) rule 15.5.

 Label out of a switch (r_nolabel). A switch label shall only be used when
the most closely-enclosing compound statement is the body of a switch statement.
It is related to Misra-C (2004) rule 15.1.

 Missing Default (r_default). The final clause of a switch statement shall be
the default clause. It is related to Cert MSC01-C, Cert MSC01-CPP and Misra-C
(2004) rule 15.3.

 Code before first case (r_nocodebeforecase). There shall be no code before
the first case of a switch statement. It is related to Cert DCL41-C.

6.2.3 Checkstyle

We identified 39 elements from the Checkstyle 5.6 rule set, corresponding to useful practices
generally well adopted by the community. The quality attributes impacted by these rules
are: analysability (23 rules), reusability (11 rules), reliability (5 rules), efficiency (5 rules),
testability (3 rules), robustness (2 rules) and portability (1 rule). All rules are described
on the project page at http://checkstyle.sourceforge.net/config.html.

 Javadoc checks (javadocmethod, javadocpackage, javadoctype, javadoc-
variable) ensure that Javadoc comments are present at the different levels of
information as it is recommended by Sun [171].

 Import checks. unusedimports looks for declared imports that are not used
in the file. They clutter space and are misleading for readers. avoidstarimport
checks that no generic import is used; specific import statements shall be used to
help the reader grasp what is inherited in the file. redundantimport looks for
duplicates in imports, which uselessly takes up visual space.

 Equals Hash Code (equalshashcode). A class that overrides equals() shall
also override hashCode(). A caller may use both methods without knowing that
one of them has not been modified to fit the behaviour intended when modifying
the other one (consistency in behaviour). It impacts reusability, reliability and fault
tolerance.

 No Hard Coded Constant (magicnumber). Hard coded constant or magic
numbers shall not be used. Magic numbers are actual numbers like 27 that appear
in the code that require the reader to figure out what 27 is being used for. One
should consider using named constants for any number other than 0 and 1. Using
meaningful names for constants instead of using magic numbers in the code makes

117

https://www.securecoding.cert.org/confluence/display/seccode/EXP45-C.+Do+not+perform+assignments+in+selection+statements
https://www.securecoding.cert.org/confluence/display/cplusplus/EXP19-CPP.+Do+not+perform+assignments+in+conditional+expressions
https://www.securecoding.cert.org/confluence/display/seccode/MSC01-C.+Strive+for+logical+completeness
https://www.securecoding.cert.org/confluence/display/cplusplus/MSC01-CPP.+Strive+for+logical+completeness
https://www.securecoding.cert.org/confluence/display/seccode/DCL41-C.+Do+not+declare+variables+inside+a+switch+statement+before+the+first+case+label
http://checkstyle.sourceforge.net/config.html

the code self-documenting, reducing the need for trailing comments. This rule is
related to programming technics and changeability.

 Illegal Throws (illegalthrows) lists exceptions that are illegal or too generic;
throwing java.lang.Error or java.lang.RuntimeException is considered to be almost
never acceptable. In these cases a new exception type shall be defined to reflect the
distinctive features of the throw.

 New line at end of file (newlineatendoffile). Checks that there is a trailing
newline at the end of each file. This is an ages-old convention, but many tools
still complain when they find no trailing newline. Examples include diff or cat
commands, and some SCM systems like CVS will print a warning when they
encounter a file that does not end with a newline.

 Anonymous Inner Length (anoninnerlength). Checks for long anonymous
inner classes. For analysability reasons these should be defined as self-standing
classes if they embed too much logic.

 Multiple String Literals (multiplestringliterals) checks for multiple oc-
currences of the same string literal within a single file. It should be defined as a
constant, both for reusability and changeability, so people can change the string at
first shot without forgetting occurrences.

6.2.4 PMD

We selected 58 rules from the PMD 5.0.5 rule set. These are related to the following
quality attributes: analysability (26 rules), maturity (31 rules), testability (13 rules),
changeability (5 rules), and efficiency (5 rules). The full rule set is documented on the
PMD web site: http://pmd.sourceforge.net/pmd-5.0.5/rules/.

 Jumbled incrementer (jumbledincrementer) detects when a variable used
in a structure is modified in a nested structure. One shall avoid jumbled loop
incrementers – it is usually a mistake, and even when it is intended it is confusing
for the reader.

 Return from finally block (returnfromfinallyblock). One shall avoid
returning from a finally block since this can discard exceptions. This rule has
an effect on analysability (developers will have trouble understanding where the
exception comes from) and fault tolerance (the return method in the finally block
may be stopping the exception that happened in the try block from propagating up
even though it is not caught). It is related to the Cert ERR04-J rule.

 Unconditional if statements (unconditionalifstatement), empty if
statements (emptyifstmt), empty switch statements (emptyswitch-
statements), empty synchronized block (emptysynchronizedblock), and
empty while statements (emptywhilestmt) are useless and clutter code. They
impact analysability – developers will spend more time trying to understand what
they are for, and they may have undesirable side effects. As for the empty while
statements, if it is a timing loop then Thread.sleep() is better suited; if it does a

118

http://pmd.sourceforge.net/pmd-5.0.5/rules/
https://www.securecoding.cert.org/confluence/display/java/ERR04-J.+Do+not+complete+abruptly+from+a+finally+block

lot in the exit expression then it should be rewritten to make it clearer. All these
are related to Cert MSC12-C.

 Empty catch blocks (emptycatchblock) are instances where an exception is
caught, but nothing is done. In most circumstances an exception should either be
acted on or reported, as examplified in the Cert ERR00-J rule. Empty try blocks
(emptytryblock) and empty finally blocks (emptyfinallyblock) serve no
purpose and should be remove because they clutter the file’s analysability.

 The God Class (godclass) rule detects the God Class design flaw using metrics.
God classes do too many things, are very big and overly complex. They should
be split apart to be more object-oriented. The rule uses the detection strategy
described in Object-Oriented Metrics in Practice [118].

 Avoid Catching Throwable (avoidcatchingthrowable). Catching
Throwable errors is not recommended since its scope is very broad. It includes
runtime issues such as OutOfMemoryError that should be exposed and managed
separately. It is related to the ERR07-J rule.

 Avoid Catching NPE (avoidcatchingnpe) Code should never throw Null-
PointerExceptions under normal circumstances. A catch block for such an excep-
tion may hide the original error, causing other, more subtle problems later on. It is
related to the Cert ERR08-J rule.

 Non Thread Safe Singleton (nonthreadsafesingleton) Non-thread safe
singletons can result in bad, unpredictable state changes. Static singletons are
usually not needed as only a single instance exists anyway: they can be eliminated
by instanciating the object directly. Other possible fixes are to synchronize the
entire method or to use an initialize-on-demand holder class. See Effective Java [25],
item 48 and Cert MSC07-J.

6.3 Projects

This section lists the projects selected for the data sets. They are open-source projects
with a set of repositories that we are able to request through the data providers developed
for that purpose (e.g. Subversion or Git for configuration management).

When the early versions of the data sets were generated, no language had been selected
so projects both written in C/C++ and Java were retrieved and analysed. Later on,
when we focused on the Java language, all the sources and information for the previous C
projects were already there, so we managed to generate new versions of these data sets
at the same time. However, Checkstyle and PMD analyses are not available for C/C++
projects, which considerably diminishes the volume of rules and practices verified on code
– only rules from Squore remain.

Since many of the examples provided in this document rely on a subset of projects,
we describe them more precisely here to provide insights into their history and modus
operandi.

119

https://www.securecoding.cert.org/confluence/display/seccode/MSC12-C.+Detect+and+remove+code+that+has+no+effect
https://www.securecoding.cert.org/confluence/display/java/ERR00-J.+Do+not+suppress+or+ignore+checked+exceptions
https://www.securecoding.cert.org/confluence/display/java/ERR07-J.+Do+not+throw+RuntimeException%2C+Exception%2C+or+Throwable
https://www.securecoding.cert.org/confluence/display/java/ERR08-J.+Do+not+catch+NullPointerException+or+any+of+its+ancestors
https://www.securecoding.cert.org/confluence/display/java/MSC07-J.+Prevent+multiple+instantiations+of+singleton+objects

6.3.1 Apache Ant

The early history of Ant begins in the late nineties with the donation of the Tomcat
software from Sun to Apache. From a specific build tool, it evolved steadily through
Tomcat contributions to be more generic and usable. James Duncan Davidson announced
the creation of the Ant project on the 13 January 2000, with its own mailing lists, source
repository and issue tracking. There have been many versions since then: 8 major releases
and 15 updates (minor releases). The data set ends in July 2012, and the last version
officially released at that time is 1.8.4. Table 6.6 lists major releases of Ant with some
characteristics of official builds as published. It should be noted that these characteristics
may show inconsistencies with the data set, since the build process extracts and transforms
a subset of the actual repository content.

Table 6.6: Major releases of Ant.

Date Version SLOC Files Functions
2000-07-18 1.1 9671 87 876
2000-10-24 1.2 18864 171 1809
2001-03-02 1.3 33347 385 3332
2001-09-03 1.4 43599 425 4277
2002-07-15 1.5 72315 716 6782
2003-12-18 1.6 97925 906 9453
2006-12-19 1.7 115973 1113 12036
2010-02-08 1.8 126230 1173 12964

Figure 6.1: Ant mailing list activity.

Ant is arguably one of the most relevant examples of a successful open source project:
from 2000 to 2003, the project attracted more than 30 developers whose efforts contributed
to nominations for awards and to its recognition as a reliable, extendable and well-supported
build standard for both the industry and the open source community. Figure 6.1 shows
the mailing lists’ activity on the data set time range. An interesting aspect of the Ant

120

project is the amount of information available on the lifespan of a project: from its early
beginnings in 2000, activity had its climax around 2002-2003 and then decreased steadily.
Although the project is actively maintained and still brings regular releases the list of
new features is decreasing with the years. It is still hosted by the Apache Foundation,
which is known to have a high interest in software product and process quality.

The releases considered for the data sets are reproduced in appendix B.1 page 255
with their dates of publishing.

6.3.2 Apache Httpd

Apache httpd is an open-source, fully-featured web server written in C. It is the most
widely used server on the Web according to netcraft surveys3 and has a strong reputation
for robustness, reliability and scalability.

Figure 6.2: History of Apache httpd usage on the Web.

The Apache httpd project started in 1995 when Rob McCool left the NCSA (National
Center for Supercomputing Applications), stalling the development of the NCSA web
server – which was the pre-eminent server at that time. From the NCSA 1.3 code base,
they collected bug fixes and worthwhile enhancements from webmasters around the world,
and released the first official public release (0.6.2) in April 1995. It was quite a big hit,
the community around the project grew steadily and development continued with new
features (0.7.x) and a new architecture (0.8.8). After extensive testing, ports to a variety
of obscure platforms, and a new set of documentation, Apache 1.0 went out on December,
1995.

3Netcraft maintains a landscape of the web, and most notably the servers used. See http://www.
netcraft.com/survey/ for more information.

121

http://www.netcraft.com/survey/
http://www.netcraft.com/survey/

The Apache Software Foundation was founded in 1999 to provide organizational, legal,
and financial support for the Apache httpd Server. Since then the foundation has greatly
expanded the number of open-source projects falling under its umbrella, and is largely
recognised for its quality concerns, both for the products it provides and the development
process in use.

There have been three major branches of the Apache httpd server: Apache 1.3 was
published on June 6, 1998 and reached its end of life with 1.3.42, on Feb. 2, 2010. The 2.0
series was first released in 2004 and ended with the 2.0.65 release July 2013. The full list
of releases for the 2.0.x and 2.2.x series, along with their date of publication considered
for the data set, is reproduced in appendix B.2 page 255.

6.3.3 Apache JMeter

The Apache JMeter desktop application is an open source,
100% pure Java application designed to load test functional
behavior and measure performance of Java client/server ap-
plications. It is widely used both in the industry and in
open-source projects and is an essential part of the classical
tool suite for Java development [167].

Development of JMeter was initially started by Stefano Mazzocchi of the Apache
Software Foundation, primarily to test the performance of Apache JServ (a project that
has since been replaced by the Apache Tomcat project). JMeter steadily grew to enhance
the GUI and to add functional-testing capabilities, and became a subproject of Apache
Jakarta in 2001, with dedicated mailing lists and development resources. JMeter became
eventually a top level Apache project in November 2011, with its own Project Management
Commitee and a dedicated website.

The evolution data set starts on the 2004-09-13 and ends on the 2012-07-30, which
constitutes 411 versions across 9 years. The release data set spans from 1.8.1, the first
version published on the Apache web site on the 2003-02-03, to 2.10, the last version at
the time of writing published on the 2013-10-21. This represents 22 versions spanning
across more than 10 years.

6.3.4 Apache Subversion

Subversion is a fully-featured version control system written in
C. In a period of 6 years (from 2004 to 2010), it has become a
de facto standard for configuration management needs both in
open-source projects and in the industry.

CollabNet founded the Subversion project in 2000 as an effort
to write an open-source version-control system which operated
much like CVS but which fixed the bugs and supplied some
features missing in CVS. By 2001, Subversion had advanced

122

sufficiently to host its own source code4. In November 2009, Subversion was accepted
into Apache Incubator: this marked the beginning of the process to become a standard
top-level Apache project. It became a top-level Apache project on February 17, 2010.

The releases data set considers all published releases from 1.0.0 (the first release
available in archives, published on the 2004-02-23) to 1.8.5 (the last release at the time of
this writing, which was published on the 2013-11-25), which represents 71 versions across
almost 10 years. The full list of releases with their date of publication considered for the
data set is reproduced in appendix B.4 page 256.

6.4 Summary

In this chapter we presented how we managed to extract a full set of consistent metrics
from various open-source software projects, carefully defining the metrics and violations
retrieved and providing useful hints to understand the history and evolution of projects.
Table 6.7 summarises all data sets that have been published at the time of writing, with
the metrics extracted for them and the number of versions available.

Table 6.7: Summary of data sets.

Code SCM Com. Rules

Project Lang. Extracts C
om

m
on

O
O

D
iff

T
im

e

To
ta
l

T
im

e

Sq
uo

r
e

P
M
D

C
he
ck
st
yl
e

Ant Java 654 X X X X X X X X X
JMeter Java 411 X X X X X X X X X
httpd 2.4 C 584 X X X X X X

Ant Java 22 X X X X X X X
JMeter Java 22 X X X X X X X
httpd 2.0 C 24 X X X X
httpd 2.2 C 20 X X X X
Subversion C 71 X X X X
Epsilon Java 2 X X X X X X

Subversion C 2 X X X
Topcased Gendoc Java 4 X X X X X X
Topcased MM Java 4 X X X X X X
Topcased gPM Java 2 X X X X X X

Evolution data sets are weekly data sets describing the evolution of the project
over a long range of time. They include temporal metrics (ladd, lmod and lrem)
and measures extracted from SCM and Communication repositories. They can be used

4See the full history of Subversion at http://svnbook.red-bean.com/en/1.7/svn.intro.whatis.html.

123

http://svnbook.red-bean.com/en/1.7/svn.intro.whatis.html

to analyse the evolution of metrics and practices during a long period. Since they are
extracted from the project repository they really correspond to what developers work with,
and give good insights on the practices really in use for day-to-day development. Since
they provide equally-spaced, regular information on data, they provide a comfortable
basis for time series analysis. It should be noted that when activity is low (e.g. at the
beginning of the project), the repository may not evolve for more than a week. In such
cases the retrieval of source code is identical for both dates.

Release data sets show characteristics of the product sources when delivered to
the public, i.e. when they are considered good enough to be published. They provide
useful information about what the users know about the product; some practices may be
tolerated during development but tackled before release, so these may be hidden in the
published source release. Furthermore, the source code tarball as published by the project
may be different from the configuration management repository files: some of them may
be generated, moved, or filtered during the build and release process. Temporal metrics
are not included in releases, because their dates are not evenly distributed in time and a
measure with a static number of weeks or months would be misleading: the last release
may have happened weeks or months ago.

Version data sets only provide a few extracts or releases of the project. They may be
used to investigate static software characteristics and practices, or relationships between
the different levels of artefacts. Metrics linked to a previous state of the project, like the
number of lines changed since the previous version or the number of commits during the
last week, lack semantic context and become meaningless. These metrics have thus been
discarded in the version data sets.

More projects are to be analysed now that the analysis process is clearly defined and
fully automated. The architecture we setup allows us to quickly add new samples. A full
weekly analysis of some Eclipse projects (including Papyrus, Mylyn, Sphinx, and Epsilon)
is about to be published, and single snapshots are added regularly.

124

Part III

Squore Labs

In theory, theory and practice are the
same. In practice, they are not.

Albert Einstein

125

Chapter 7

Working with the Eclipse foundation

The first Squore Lab was initiated in November 2012 as a collaboration with Airbus on
the Topcased project, an open-source initiative targeted at embedded systems development
and led by major actors of the aerospace industry. Squoring Technologies had been in
touch with Pierre Gaufillet1 and Gaël Blondelle2 to work on a quality model and a process
for the various components of the project and we implemented it on the Maisqual server.
In 2013 Topcased was included in the new Polarsys Industry Working Group, operating
under the Eclipse foundation umbrella, and we were invited to participate in the Maturity
Assessment task force.

For six months we participated in conference calls and meetings, really pushing the
project forward, discussing issues with major actors from the industry (Airbus, Ericsson,
Mercedes, BMW, among others) and the Eclipse Foundation, and we finally came up with
a fully-blended quality model for Polarsys. We also worked with Wayne Beaton3 during
this time.

This chapter describes how we conducted this project, the steps we followed to propose
a tailored quality model and its implementation. Section 7.1 gives a quick description of
the context of the mining program. The data mining program was shaped according to
the approach defined in Foundations: sections 7.2, 7.3 and 7.4 respectively declare the
intent of the program, define quality requirements and describe the metrics to be used.
Section 7.6 shows some results and section 7.7 summarises what we learned from this
project and our contribution.

1Pierre Gaufillet is a software engineer at Airbus in Toulouse. Advocating open source strategy and
model driven engineering, he is also involved in Topcased and OPEES initiatives.

2Gaël Blondelle is the french representative and community manager for Eclipse. He co-founded the
Toulouse JUG in 2003, and is now heavily involved in the Polarsys IWG.

3Wayne Beaton is responsible for the Eclipse Project Management Infrastructure (PMI) and Common
Build Infrastructure (CBI) projects.

127

7.1 The Eclipse Foundation

In the late 90’s IBM started the development of a Java IDE, with a strong emphasis on
modularity. Initial partners were reluctant to invest in a new, unproven technology, so in
November 2001 IBM decided to adopt the open source licensing and operating model for
this technology to increase exposure and accelerate adoption. The Eclipse consortium,
composed of IBM and eight other organisations, was established to develop and promote
the new platform.

The initial assumption was that the community would own the code and the commercial
consortium would drive marketing and commercial relations. The community started
to grow, but the project was still considered by many as an IBM-controlled effort.
To circumvent this perception the Eclipse Foundation was created in 2003 as a non-
profit organization with its own independent, paid professional staff, financed by member
companies. This move has been a success. From its roots, and thanks to its highly modular
architecture, hundreds of projects have flourished, bringing more tools, programming
languages and features. Now Eclipse is the de-facto standard both for the open source
community and industry. It is one of the largest open source software foundations, and a
wonderful example of open source success.

An important characteristic of the Eclipse Foundation is its strong link to industry.
Many companies evolve around the Eclipse ecosystem, shipping products based on the
platform, offering consulting services, or simply using it on a large scale. This collaboration
takes place at first in Industry Working Groups (IWG), which is a type of task force
working on a specific subject, with clear requirements, milestones, and well-defined outputs.

The Polarsys Industry Working Group was started in 20124 to address concerns
specific to the development of critical embedded systems. Namely, its objectives are to:

 Provide Very Long Term Support – up to 10 and 75 years.
 Provide certification to ease the tools qualification in complex certification processes.
 Develop the ecosystem of Eclipse tools for Critical Embedded Systems.

7.2 Declaration of intent

The objectives of the conducted program have been identified as follows:

 Assess project maturity as defined by the Polarsys working group stated goals. Is the
project ready for large-scale deployments in high-constraint software organisations?
Does it conform to the Eclipse foundation recommendations?

 Help teams develop better software regarding the quality requirements defined.
Propose guidance to improve the management, process and product of projects.

4See www.polarsys.org.

128

http://www.polarsys.org

 Establish the foundation for a global agreement on quality conforming to the Eclipse
way. A framework to collaborate on the semantics of quality is the first step to a
better understanding and awareness of these concerns in the Eclipse community.

7.3 Quality requirements

The first thing we did was to establish the quality requirements of the Eclipse foundation,
and more specifically in the context of embedded systems for Polarsys. We gathered a
set of concerns from the foundation’s stated guidelines, recommendations and rules, and
discussed with the Polarsys team the establishment of criteria for good-citizen projects.

Figure 7.1: Proposed Eclipse quality model.

Because of their open-source nature, Eclipse components have strong maintainability
concerns, which are actually re-enforced for the Polarsys long-term support require-
ments. In the spirit of the ISO/IEC 9126 standard[94] these concerns are decomposed
in analysability, changeability and reusability. Another quality requirement is re-
liability: Eclipse components are meant to be used in bundles or stacks of software,
and the failure of a single component may threaten the whole application. For an indus-
trial deployment over thousands of people in worldwide locations this may have serious
repercussions.

The Eclipse foundation has a strong interest in IP management and predictability
of outputs. Projects are classified into phases, from proposal (defining the project) to
incubating (growing the project) and mature (ensuring project maintenance and vitality).
Different constraints are imposed on each phase: e.g. setting up reviews and milestones,
publishing a roadmap, or documenting APIs backward compatibility. In the first iteration
of the quality model only IP management and planning management are addressed.

Communities really lie at the heart of the Eclipse way. The Eclipse manifesto defines
three communities: developers, adopters, and users. Projects must constitute, then grow
and nurture their communities regarding their activity, diversity, responsiveness and
support capability. In the context of our program we will mainly focus on developer and
user communities.

129

Figure 7.2: Proposed Eclipse quality model: Product.

Figure 7.3: Proposed Eclipse quality model: Process.

7.4 Metrics identification

Source code Source code is extracted from Subversion or Git repositories and analysed
with Squore [11]. Static analysis was preferred because automatically compiling the
different projects was unsafe and unreliable. Further analysis may be integrated with
continuous build servers to run dynamic analysis as well. Metrics include common estab-
lished measures like line-counting (comment lines, source lines, effective lines, statements),
control-flow complexity (cyclomatic complexity, maximum level of nesting, number of
paths, number of control-flow tokens) or Halstead’s software science metrics (number of
distinct and total operators and operands). Findings include violations from Squore,
Checkstyle and PMD. All of these have established lists of rules that are mapped to
practices and classified according to their impact (e.g. reliability, readability).

130

Figure 7.4: Proposed Eclipse quality model: Community.

SCM metadata A data provider was developed to retrieve software configuration
metadata from the two software configuration management systems used inside Eclipse,
Subversion and Git. The metrics identified are the following: number of commits,
committers, committed files, and fix-related commits. All measures are computed for the
last week, last month and last three months as well as in total. This enables us to identify
recent evolution of the project by giving more weight to the most recent modifications.

Communication Communication channels used at Eclipse are NNTP news, mailing
lists and web forums. All of these can be mapped and converted to the mbox format,
which we then parse to extract the metrics we need. Metrics retrieved are the number
of threads, distinct authors, the response ratio and median time to first answer. Metrics
are gathered for both user and developer communities, on different time frames to better
grasp the dynamics of the project evolution (one week, one month, three months).

Process repository The Eclipse foundation has recently started an initiative to cen-
tralise and publish real-time process-related information. This information is available
through a public API returning JSON and XML data about every Eclipse component.
At that time only a few fields were actually fed by projects or robots, and although we
worked with Wayne Beaton on the accessibility of metrics it was decided to postpone their
utilisation to the next iteration. Here are some examples of the metrics defined in the
JSON file: description of the basic characteristics of the project, the number and status
of milestones and reviews, their scope in terms of Bugzilla change requests. The XML
API provides valuable information about intellectual property logs coverage.

7.5 From metrics to quality attributes

The next step in the mining process is to define the relationships between attributes of
quality and the metrics defined. As pointed out earlier (cf. section 2.3), there is no single
definitive truth here and the people involved in the process have to be in agreement and

131

the work published. As for the product quality part (cf. figure 7.2), all sub-characteristics
have been constructed with the same structure:

1. One or more technical debt indexes computed at different levels (e.g. File, Class,
Function Characteristic Index). As an example, reusability is often considered at
the class level, hence a Class Reusability Index.

2. A number of violations to rules (a.k.a. Non conformities Index for Characteristic)
that are linked to the quality characteristic (e.g. fault tolerance, analysability).

3. A ratio of acquired practices (a.k.a. Adherence to Characteristic Standards), which
is the number of rules that are never violated divided by the total number of rules
for the quality characteristic.

The process part is loosely mapped to process-related standards such as the CMMi.
Sub-characteristics are linked to metrics from the process repository (e.g. boolean values
such as Is there a wiki? or Is there a download site?, milestones or reviews), IP logs, test
results, and communication metrics. The exact decomposition is shown on figure 7.3.

The community quality part is tied to scm metrics (e.g. number of commits, or com-
mitters) and communication metrics (e.g. number of distinct authors, ratio of responses,
or median time to first answer). The exact decomposition is shown on figure 7.4.

7.6 Results

The first output of this work is the Eclipse quality model depicted in figure 7.1 on
page 129. We made a proposition to the working group and from this proposition, the
members of the group discussed and improved the quality attributes and model. They
were also able to better visualise the decomposition of quality and relationships between
quality attributes and metrics. This led to new ideas, constructive feedback and fruitful
discussion, and the group could eventually agree on a common understanding of quality
and build upon it.

The prototype for this first iteration of the quality program has been implemented
with Squore[11], which provides several graphical and textual means to deliver the
information:

 A quality tree that lists the quality attributes and shows the non-conformance to the
identified requirements (cf figure 7.5a). The evolution or trend since the last analysis
is also depicted for every quality attribute, which enables one to immediately identify
the areas that have been improved or shattered.

 Action lists, classified according to the different concerns identified: overly complex
or untestable files, naming conventions violations, or a refactoring wish list. An
example is shown on figure 7.6b.

 Clear coloured graphics that immediately illustrate specific concepts as shown
on figure 7.6a. This proves to be especially useful when the characteristics of an
incriminated file make it significantly different than the average so it can be identified
at first sight, for example for highly complex or unstable files.

132

(a) Epsilon quality tree. (b) Sphinx quality tree.

Figure 7.5: Examples of results for Polarsys.

From the maturity assessment perspective, the quality model tree as shown in
figure 7.5 allows identifying quickly the requirements that are not fulfilled by the project.
A good example is the Sphinx project, which has a fairly good product and process quality,
but receives low marks on the community aspects. When investigating, we found out
there is a single company behind all commits and they don’t respond to the mailing list,
which is a serious concern for the project’s maintainability and overall durability. This is
something hard to identify without the indicators that have been setup.

The other objective of the project was to propose pragmatic advice on quality
improvement, both at the product and process levels. This is achieved through several
means:

 Lists of violations on the defined practices (figure 7.6b), with their description,
precise location (line number in file), impact, and possible solutions. The delta with
the last analysis is also shown to highlight what has been recently introduced.

 Action items list dedicated to some important violations or specific areas of im-
provement. The model typically proposes to act first on the practices that are
almost acquired, e.g. with a low number of violations, before acting on practices
that demand a huge effort to comply with. The intent is both to secure the acquired
practices and to not discourage developers with an extensive (and useless) list of
thousands of warnings.

 The decomposition in artefacts (application > folders > files > classes > functions)
allows to focus on the parts of the product that have a lower quality, both to warn
developers on some modifications and for refactoring.

133

(a) Evolution of Gendoc files notations. (b) Eclipse E4 findings.

Figure 7.6: Examples of results for Polarsys.

 Graphics that allow to grasp some aspects of the software. Examples are the
repartition of file evaluations across different versions to show their trend (cf. figure
7.6a) or plots showing the instability of files (number of commits and fixes).

7.7 Summary

This was a very instructional project, which benefited all actors involved in the process.
We achieved the following objectives during this prototype:

 Lay down the foundations of a constructive discussion on software quality and
sow the seeds of a common agreement on its meaning and ways to improve it. A
first, fully-featured version of the quality model gathered enough agreement to be
recognised by all parts. The quality model would then be enhanced during the next
iterations, with new quality attributes and new metrics.

 Define a wide spectrum of metrics to address the different quality attributes, from
code to process and community. Practices and metrics have been publicly defined,
their retrieval process has been automated and a common agreement has been
established as for their links to the various quality attributes.

 Build a functional proof of concept: the prototype we installed on the Maisqual
server demonstrated the feasibility and usability of such a program.

A licensing problem arose in July, 2013 when Polarsys decided that all tools involved
in the working group had to be open source. Unfortunately, the Eclipse foundation and
Squoring Technologies could not come to an accord and the involvement in Polarsys
stopped in August, 2013. Before leaving we described in the Polarsys wiki the method,
metrics and quality model for the community to reuse and enhance. Gaël Blondelle and

134

Victoria Torres (from the Universitat Politècnica de València, Spain) are now working on
the next iteration of the prototype, continuing the early steps we began.

From the Squoring Technologies perspective, this work brought two substantial
benefits: the marketing service could use it as a communication campaign, and the
experience gathered on the process- and community- aspects has been integrated in
the Squore product models. This eventually gave birth to another process-oriented
assessment project on GitHub.

From the Maisqual perspective, this was a successful implementation of the approach
we defined earlier, in an industrial context (see section 5.2). People were happy to build
something new, conscious of the different constraints and pitfalls, and our collaboration
was very profitable. We could produce both a quality model and a prototype that were
considered satisfying by stakeholders and users.

Finally the goals, definitions, metrics and resulting quality model were presented at
the EclipseCon France conference held in May, 2013 in Toulouse and received good and
constructive feedback5.

“ Squoring proposal for the Eclipse Quality Model at
#eclipsecon sounds great! Hope it will be adopted by
the whole eclipse community. ”

Fabien Toral, Twitted during EclipseCon France.

5Slides for the EclipseCon France 2013 session are still available on the EclipseCon web site:
www.eclipsecon.org/france2013/sessions/software-quality-eclipse-way-and-beyond.

135

http://www.eclipsecon.org/france2013/sessions/software-quality-eclipse-way-and-beyond

136

Chapter 8

Outliers detection

One of the key features of Squore resides in Action Items, which are lists of artefacts with
specific characteristics: e.g. very complex functions that may be untestable, or files with
too many rule violations. They are very flexible in their definitions and can be customised
for the specific needs of customers, providing powerful clues for maintenance and decision
making. As of today they rely on static thresholds, which have two drawbacks: static
values do not fit all situations (critical embedded systems have different constraints than
desktop applications) and they frequently output a huge number of artefacts (too many
for incremental quality improvement).

The intent of this work on outliers is to replace the statically triggered action items with
dynamic techniques that auto-adapt the detection thresholds to the project characteristics.
The first section defines the requirements of this project. Section 8.2 details the statistical
techniques we use for the detection of outliers. The actual implementation of the process
and the precise description of the outliers we are looking for is shown in section 8.3.
Results are discussed in section 8.4 and conclusions expanded in section 8.5.

8.1 Requirements: what are we looking for?

Outliers have a specific meaning in the semantic context of software engineering. Before
trying to find something special, we first need to define what kind of information and
specificity we are looking for (e.g. files that have a control flow complexity that is
significantly higher than the average files in the project). We also need to identify the
characteristics and the detection technique to trigger them automatically with a good
level of confidence.

We intend to detect in the first round of trials the following three types of outliers:

 Unreadable code: files or functions that may be difficult to read, understand and
modify by other developers – obfuscated code is an extreme case of an unreadable
file. We define two levels of unreadability: medium (code is difficult to read) and
high (obfuscated code). For this we rely on a measure of density of operands and

137

operators, as output by Halstead metrics. Squore does not propose any mechanism
to detect them as of today.

 Untestable functions that have a huge control-flow complexity. This induces a large
number of test cases to obtain a fair coverage and increases the overall complexity
of testing.

 Cloned code inside a function is detected through frequency of vocabulary and
control-flow complexity. Cloning is bad for maintainability: any modification (bug
correction or new feature) in one part should be implemented in the other cloned
parts as well.

A strong requirement is the number of artefacts output by the method; since most
of Squore models deal with incremental quality improvement, we are looking for a
rather small number of artefacts to focus on. Doing this prevents developers from being
overwhelmed by too many issues: they can work on small increments and steadily increase
their practices and the code quality.

The validation of results is achieved via two means. Firstly, the Squore product
comes out-of-the-box with a pre-defined set of action items, which we will use to validate
our own findings when available. Since static thresholds are used however, we don’t expect
to get the same number of artefacts, but rather an intersecting set with a low number of
items. Secondly, when no action item exists for a given purpose or if we get a different set
of artefacts, we manually check them to ensure they suit the search.

8.2 Statistical methods

We used and combined three outliers detection techniques: boxplots (as described in Lau-
rikkala et al. [120] and an adjusted version for skewed distributions from Roosseeuw [153]),
clustering-based and tail-cutting, a selection method that we setup for our needs.

8.2.1 Simple tail-cutting

As presented in section 4.2.2 many metric distribu-
tions have long tails. If we use the definition for
outliers of Lincke et al. [126] and select artefacts
with metrics that have values greater than 85% of
their maximum, we usually get a fairly small number
of artefacts with especially high values. The figure
on the right illustrates the selection method on one
of the distribution function we met.

Table 8.1 shows the maximum value of a sample
of metrics and their 95% (Max - 5%), 85% (Max - 15%), and 75% (Max - 25%) thresholds
with the number of artefacts that fit in the range. Projects analysed are Ant 1.7 (1113

138

files), and various extracts from SVN: JMeter (768 files), Epsilon (777 files) and Sphinx
(467 files).

Table 8.1: Values of different thresholds (75%, 85%, 95% and maximum value for metrics)
for tail-cutting, with the number of outliers selected in bold.

Project Metrics 75% 85% 95% Max value (100%)
sloc 1160 (3) 1315 (2) 1469 (1) 1546

Ant ncc 507 (3) 575 (2) 643 (2) 676
vg 267 (3) 303 (2) 339 (1) 356
sloc 729 (3) 827 (1) 924 (1) 972

JMeter ncc 502 (5) 569 (3) 636 (1) 669
vg 129 (4) 147 (2) 164 (1) 172
sloc 3812 (6) 4320 (6) 4828 (6) 5082

Epsilon ncc 7396 (6) 8382 (6) 9368 (2) 9861
vg 813 (6) 922 (6) 1030 (6) 1084
sloc 897 (5) 1016 (4) 1136 (1) 1195

Sphinx ncc 801 (2) 907 (2) 1014 (1) 1067
vg 233 (2) 264 (2) 295 (2) 310

The main advantage of this method is it permits us to find points without knowing
the threshold value that makes them peculiar: e.g. for the cyclomatic complexity, the
recommended and argued value of 10 is replaced by a value that makes those artefacts
significantly more complex than the vast majority of artefacts. This technique is a lot
more selective than boxplots and thus produces less artefacts with higher values.

8.2.2 Boxplots

One of the simplest statistical outlier detection methods was introduced by Laurikkala et
al. [120] and uses informal box plots to pinpoint outliers on individual variables.

We applied the idea of series union and intersection1 from Cook et al. [39] to outliers
detection, a data point being a multi-dimensional outlier if many of its variables are
themselves outliers. The rationale is that a file with unusually high complexity, size, number
of commits, and a very bad comment ratio is an outlier, because of its maintainability
issues and development history. We first tried to apply this method to the full set of
available metrics, by sorting the components according to the number of variables that
are detected as univariate outliers. The drawback of this accumulative technique is its
dependence on the selected set of variables: highly correlated metrics like line-counting
measures will quickly trigger big components even if all of their other variables show

1In [39] authors use univariate series unions and intersections to better visualise and understand data
repartition.

139

standard values. Having a limited set of orthogonal metrics with low correlation is needed
to balance the available information.

Figure 8.1: Combined univariate boxplot outliers on metrics for Ant 1.7: sloc, vg (left)
and sloc, vg, ncc (right).

Figure 8.1 (left) shows the sloc and vg metrics on files for the Ant 1.7 release, with
outliers highlighted in blue for vg (111 items), green for sloc (110 items), and red for the
intersection of both (99 items). The same technique was applied with three metrics (sloc,
vg, ncc) and their intersection in the figure on the right. There are 108 ncc outliers
(plotted in orange) and the intersecting set (plotted in red) has 85 outliers. Intersecting
artefacts accumulate outstanding values on the three selected metrics. Because of the
underlying distribution of measures however the classical boxplot shows too many outliers –
or at least too many for practical improvement. We used a more robust boxplots algorithm:
adjBoxStats [153]. This algorithm is targeted at skewed distributions2 and gave better
results with fewer, more atypical artefacts.

8.2.3 Clustering

Clustering techniques allow us to find categories of similar data in a set. If a data point
cannot fit into a cluster, or if it is in a small cluster (i.e. there are very few items that
have these similar characteristics), then it can be considered an outlier [23, 165]. In this
situation, we want to use clustering algorithms that produce unbalanced trees rather
than evenly distributed sets. Typical clustering algorithms used for outliers detection are
k-means [98, 197] and hierarchical [73, 3]. We used the latter because of the very small

2Extremes of the upper and whiskers of the adjusted boxplots are computed using the medcouple, a
robust measure of skewness.

140

Table 8.2: Cardinality of clusters for hierarchical clustering for Ant 1.7 files (7 clusters).

Euclidean distance
Method used Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7
Ward 226 334 31 97 232 145 48
Average 1006 6 19 76 3 1 2
Single 1105 3 1 1 1 1 1
Complete 998 17 67 3 21 3 4
McQuitty 1034 6 57 10 3 1 2
Median 1034 6 66 3 1 2 1
Centroid 940 24 142 3 1 2 1
Manhattan distance
Method used Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7
Ward 404 22 87 276 62 196 66
Average 943 21 139 4 3 1 2
Single 1105 3 1 1 1 1 1
Complete 987 17 52 3 47 3 4
McQuitty 1031 12 60 3 1 4 2
Median 984 6 116 3 1 2 1
Centroid 942 24 140 3 1 2 1

clusters it produces and its fast implementation in R [147]. Clustering techniques have
two advantages: first they don’t need to be supervised, and second they can be used in an
incremental mode: after learning the clusters, new points can be inserted into the set and
tested for outliers [95].

We applied hierarchical clustering to file measures with different distances and agglom-
eration methods. On the Apache Ant 1.7 source release (1113 files) we got the repartition
of artefacts shown in table 8.2 with Euclidean and Manhattan distances. Linkage methods
investigated are Ward, Average, Single, Complete, McQuitty, Median and Centroid. The
Manhattan distance produces more clusters with fewer elements than the Euclidean
distance. The aggregation method used also has a great impact: the ward method draws
more evenly distributed clusters while the single method consistently gives many clusters
with only a few individuals.

8.2.4 A note on metrics selection

Metrics selection greatly influences the results: they have to be carefully selected according
to the target of the analysis. The metrics used in traditional action items are selected by
software engineering experts and usually show a great relevance. We still have to check
them for redundancy and pertinence, sometimes removing some measures that do not
bring any added value. Using too many metrics usually gives poor or unusable results

141

because of their relationships, the diversity of information they deliver and our ability to
capture this information and its ramifications.

Figure 8.2: Outliers in clusters: different sets of metrics select different outliers.

As an example, the same detection technique (i.e. same distance and linkage method)
was applied to different sets of metrics in figure 8.2: outliers are completely different
depending on the metric sets used, and are even difficult to visually identify. We got the
best results by first selecting the metrics identified by our experience with customers,
and then challenging them by removing some (e.g. correlated) measures, or adding new
dimensions that may have had an impact on the practice we wanted to target. Results
were manually checked: plots allow to quickly dismiss bad results and lists of items allow
fine-grained verification.

8.3 Implementation

8.3.1 Knitr documents

The first trials had been run through a dedicated Knitr document. It featured different
outliers detection techniques, combined and applied on different sets of metrics and
different projects. The different techniques implemented were:

Boxplots outliers detection, both univariate and multivariate, on common metrics (e.g.
vg, cft or ncc). Graphs are plotted to highlight the outliers visually (see appendix
C.1). A second part lists the top 10 outliers on each metric.

Univariate boxplots sorted: files with a higher number of outliering metrics are highlighted
and displayed as a list, with the metrics that are considered as outliers for them.
An example is provided in appendix C.1.

142

Hierarchical clustering, based on Euclidean and Manhattan distances. Various agregation
methods and number of clusters are tried and output as tables and graphs. An
example of a run on the Papyrus project is shown in appendices C.1 at page 266
and C.1 at page 267.

Local Outlier Factor [30] implemented in DMwR::lofactor [177] is applied both on a set
of single metrics and on a multivariate set.

PCOut [65], which is a fast algorithm for identifying multivariate outliers in high-
dimensional and/or large datasets. Based on the robustly sphered data, semi-robust
principal components are computed which are needed for determining distances for
each observation. Separate weights for location and scatter outliers are computed
based on these distances. The combined weights are then used for outlier identifica-
tion. Without optimisation it produces very high rates of outliers: 95 out of 784
files (12%) for JMeter (2005-03-07 extract), and 1285 out of 5012 files (25%) for
Papyrus (2010-01-18 extract).

covMCD [153] from V. Todorov [176] is another outliers detection algorithm developed
for large data sets. It computes a robust multivariate location and scale estimate
using the fast MCD (Minimum Covariance Determinant) estimator. It is well fitted
for normal data, but unfortunately in the samples we ran the number of outliers is
far too high to be usable in our context: 225 out of 784 files (28%) for JMeter, 1873
out of 5012 files (37%) for Papyrus.

For each technique, results are both displayed through graphics (to grasp the essence
of the specificities of selected artefacts) and lists of outliers. The document is long (112
pages as an average, although it depends on the number of outliers listed) and could not
be included in its entirety in the appendix. However a few pages have been extracted
from the Papyrus analysis to demonstrate specific concerns in appendix C.1:

 The list of figures and tables – lists of outliers are output with a different environment
and do not appear there.

 The basic summary of metrics showing minimum, maximum, mean, variance and
number of modes for all measures.

 An example of scatterplot for 3-metrics combination of boxplots outliers.
 The table of metrics with the count of outliers and percent of data sets, for the

univariate sorting method.
 An example of plots for the hierarchical clustering, with a dendogram of artefacts

for the Euclidean distance and Ward agregation method, and a table summarising
the number of elements in each cluster for the different agregation methods.

 Another example of hierarchical clustering with the Manhattan distance and the
single agregation method. Compared to the previous sample, the ward method
separates the artefacts in several equilibrated clusters while the single method designs
a huge cluster with many adjacent, small clusters.

The prototype was considered performant enough to allow for implementation in the
Squore product.

143

8.3.2 Integration in Squore

The integration in Squore implied a few changes in the engine itself, since some inputs
needed for the outliers detection mechanism were available only in a later stage in the
process. A Squore analysis first executes the Squore analyser, then runs the data
providers to attach information to the artefacts, runs the computations for the derived
data and then computes action items. We had to slightly modify the execution flow
to implement back loops to use the findings at the AddData stage and provide outliers
detection information to the engine, as shown in figure 8.2.

(a) Squore architecture before OD.

(b) Squore architecture with OD.

Figure 8.2: Modifications in the architecture of Squore for outliers detection.

We implemented a modular architecture to allow easy integration of new outliers
types. Outliers are detected using R algorithms provided as external scripts which are
automatically executed by the engine when they are put in the data provider directory.
As for the data provider itself, the sequence of actions is as follows:

144

1. Metrics for files and functions output by the Squore analyser are read. Some basic
sanitary checks are performed as for the availability of metrics and consistency of
input files.

2. The od_init.R file, located in the data provider directory, is executed as a preamble
to the outliers detection. It computes some derived measures which we do not have
at that time in Squore such as vg, vocf, or r_dopd (dopd/sloc).

3. Each type of outlier has a specific file in the same directory. These are automatically
read and executed in a R session when the data provider is run. Artefacts are tagged
with a measure of their outlierness and results can be used afterwards in graphs and
tables in the Squore interface.

8.3.3 R modular scripts

A naming convention was defined for the name and type of artefacts of the detection
technique used. The files used to configure detection have the following format:

od_<type>_<name>.conf
Where <type> is one of c("file", "function") and <name> is the descriptor of

the outliers found. In the quality model used afterwards the outliers have a measure
IS_OUTLIER_<name> set to 1. Hence it is very easy to add a new type of outlier and
its associated detection technique. The goal is to allow new types and implementations of
outliers in specific contexts, using specific metrics, quickly and easily – one does not even
need to restart Squore to take modifications into account.

The structure of these files is twofold. We first define the metrics we want to use in
our detection mechanic, which will be dynamically generated and made available to the
R script through command-line parameters upon execution. The second part gives the
R code that actually computes the outliers and returns them stored in an array. The
following example shows a typical sample that simply returns the first 10 lines of the data
set as outliers (purposely named outs), and needs three metrics: vg, sloc, and ncc.

= START METRICS =
VG
SLOC
NCC
= END METRICS =

= START R =
outs <- project[1:10,1]
= END R =

8.4 Use cases

Once a comfortable setup had been designed and implemented, we could experiment
with our data easily (see next paragraph for the data sets considered). We defined three
outliers detection techniques for the use cases defined in Section 8.1: hard to read files
and functions, untestables functions, and code cloning inside a function.

145

We conducted the tests and the validation phase on a set of 8 open-source projects of
various sizes. 4 are written in C and 4 are written in Java. Results are reproduced in the
tables below, and elements of comparison are given when available – i.e. when existing
action items provided static threshold in the Squore base product.

8.4.1 Hard to read files and functions

Inputs

This type of outlier has no equivalence in the Squore product. We discovered that code
with a high density of operands and operators – as shown by Halstead’s dopd, dopt,
topd, topt measures – is more difficult to read and understand, at least when it is
compressed on a few lines. For this purpose four derived density measures are computed
in the initialisation file (od_init.R) and passed on to the script:

r_dopd is the number of distinct operands divided by the number of source lines of
code.

r_dopt is the number of distinct operators divided by the number of source lines of
code.

r_topd is the total number of operands divided by the number of source lines of code.
r_topt is the total number of operators divided by the number of source lines of code.

The sloc metric is also used as an input to the script in order to remove files that
are too small. The rationale is that people reading this code need to track more items
(i.e. high values for topd and topt), in a more complex control flow (i.e. high values for
dopd and dopt) to grasp the algorithm. An example of an obfuscated file that can be
easily identified with such high ratios is provided below:

include<stdio.h>// .IOCCC Fluid-
include <unistd.h> //2012 _Sim!_
include<complex.h> //|||| ,____. IOCCC-
define h for(x=011; 2012/*
*/-1>x ++;)b[x]//-’ winner
define f(p,e) for(/*
*/p=a; e,p<r; p+=5)//
define z(e,i) f(p,p/*
*/[i]=e)f(q,w=cabs (d=*p- *q)/2- 1)if(0 <(x=1- w))p[i]+=w*///

double complex a [97687] ,*p,*q ,*r=a, w=0,d; int x,y;char b/* ##
*/[6856]="\x1b[2J" "\x1b" "[1;1H ", *o= b, *t; int main (){/**
/for(;0<(x= getc (stdin));)w=x >10?32< x?4[/
*/*r++ =w,r]= w+1,*r =r[5]= x==35, r+=9:0 ,w-I/*
/:(x= w+2);; for(;; puts(o),o=b+ 4){z(p [1]/*
/9,2) w;z(G, 3)(d(3-p[2] -q[2]) *P+p[4]*V-/*
*/q[4] *V)/p[2];h=0 ;f(p,(t=b+10 +(x=*p *I)+/*
/80(y=*p/2),*p+=p [4]+=p [3]/10 *!p[1]))x=0/*
*/ <=x &&x<79 &&0<=y&&y<23?1[1 [*t|=8 ,t]|=4,t+=80]=1/*
*/, *t |=2:0; h=" ’‘-.|//,\\" "|_" "\\/\x23\n"[x/**
/%80- 9?x[b] :16];;usleep(12321) ;}return 0;}/
####
###
**###*/

146

Algorithm

We applied two detection techniques to identify hard to read files: tail-cutting and cluster-
based. Artefacts found by both methods were considered as heavy, high-impact unreadable
files, whereas artefacts that were exclusively identified by only one of the methods were
considered as medium-impact unreadable. We also had to add a criterion on the size of
files, since the enumerated ratios can be set to artificially high values because of a very
small sloc without having a large dopd/dopt/etc., as it is the case for Java interfaces.
The size threshold has been set to sloc > 10. The R code serving this purpose for files is
quite long and is shown in appendix D.3 on page 285.

At the function level, best results were achieved with cluster selection only. In the
following code, only clusters which represent less than 10% of the total population are
retained and their included items selected:

= START R =
c l u s t s <− 7
project_d <− d i s t (project_data , method="manhattan ")
hc <− hc lu s t (d=project_d , method="s i n g l e ")
groups_s ing le <− cut r e e (hc , k=c l u s t s)
mylen <− c e i l i n g (nrow (project_data)∗0 . 1)
outs <− p ro j e c t [0 , 1 : 2]
names (outs) <− c ("Name" , " Clus te r ")
f o r (i in 1 : c l u s t s) {

i f (l ength (groups_s ing le [groups_s ing le == i]) < mylen) {
d <− p ro j e c t [groups_s ing le == i , 1 : 2] ;
names (d) <− c ("Name" , " Clus te r ") ;
d [, 2] <− i ; outs <− rbind (outs , d)

}
}
outs_a l l <− outs
outs <− outs_a l l [, 1]
= END R =

Results

These methods gave good results. Figure 8.3 shows the number of hard to read files and
functions for the various projects we analysed. We always find a fair number of them,
defining a small set of items to watch or refactor for developers.

For the C projects we retrieved some outliers from the International Obfuscated C
Contest web site (see IOCCC [138]) and scattered them in the test projects. We intended
to identify all of them with our method, plus a few files in the project that definitively
had analysability concerns. It worked quite well since the algorithm found the obfuscated
files in all cases, either as high-impact or medium-impact. The high-impact method
unveiled obfuscated files only, and one obfuscated file (the most readable one among the
obfuscated files) was caught by the medium-impact rule. When more files were found by
the Medium-impact rule, they were found to be hard to read as well. The following tables

147

Figure 8.3: Hard To Read files and functions with our outliers detection method.

show numeric results on the Java and C projects: we get only a few Hard To Read files
and they all show readability concerns.

Project Jacoco HoDoKu Freemind JFreeChart
File HTR High 0 0 1 1
File HTR Medium 6 8 3 6
Func HTR High 1 2 1 1
Func HTR Medium 3 4 1 3

Project Evince Agar Amaya Mesa
File HTR High (injected/natural) 4/0 4/0 4/0 4/0
File HTR Medium (injected/natural) 1/3 1/5 1/3 1/4
Func HTR High 0 1 0 0
Func HTR Medium 4 3 5 3

Figure 8.4 highlights the number of hard to read files detected with our method: all
obfuscated files are identified (purple and blue) and a few other natural files (orange) are
proposed, which all have analysability concerns.

148

Figure 8.4: Hard To Read files with injected outliers.

Obfuscated files do not define functions that would trigger the Hard-To-Read flag. As
a consequence, the functions highlighted by the outliers detection mechanism are only
real-life functions found in the project itself and are hugely complex. An example of such
a function is shown in appendix D.2.

8.4.2 Untestable functions

Inputs

Untestable functions are detected according to three measures that reflect the complexity
of the code control flow. All of them have to be triggered to make the action item pop up:

vg is the cyclomatic complexity, a graph-complexity measure derived from the graph
theory by McCabe [130]. Its forbidden range is defined as [30;∞[.

nest is the level of control-flow structures nesting. Its forbidden range is defined as
[4;∞[.

npat is the total number of execution paths. Its forbidden range is defined as [800;∞[.

For domains with high constraints on testing and verification (like space or aeronautics,
for which all (100% of) execution paths of the program must be covered by tests) this
may be very expensive and may even block certification.

Algorithm

We want to highlight functions that cumulate high values on many of their attributes. To
do this, we rely on the recipe experimented in the Version Analysis Knitr document (see
section 4.2). Outliers are identified with adjusted boxplots on each metric, and artefacts

149

which have the higher number of outliering variables are selected. The R algorithm used
is the following:

= START R =
requ i r e (’ robustbase ’)
dim_cols <− nco l (p r o j e c t)
dim_rows <− nrow (p r o j e c t)
outs_a l l <− data . frame (matrix (FALSE,

nrow = dim_rows ,
nco l = dim_cols)

)
colnames (outs_a l l) <− names (p r o j e c t)
outs_all$Name <− project$Name
f o r (i in 2 : nco l (outs_a l l)) {

myouts <− which (p r o j e c t [, i] %in% adjboxStats (p r o j e c t [, i]) $out) ;
outs_a l l [myouts , i] <− TRUE

}
f o r (i in 1 : nrow (outs_a l l)) {

nb <− 0 ; f o r (j in 1 : dim_cols) {
nb <− nb+(i f (outs_a l l [i , j]==TRUE) 1 e l s e 0)

} ;
outs_a l l [i ,1+dim_cols] <− nb

}
outs_a l l <− outs_a l l [order (outs_a l l [,1+ dim_cols] , d e c r ea s ing=T) ,]
outs <− subset (

outs_al l ,
out s_a l l [,1+ dim_cols] == max(outs_a l l [,1+ dim_cols])

)
outs <− pro j e c t_funct i on [row . names (outs [, 0]) , "Name"]
= END R =

Results

In the tables shown below, OD lines show the number of artefacts identified by the
outliers detection method while AI lines give the number of artefacts found by traditional,
statically-defined action items. OD & AI lines give the number of artefacts that are found
by both techniques. The coverage line indicates how many of the outliers are effectively
detected by the action items while the matching line shows how many of the action items
are found by the outliers. A 100% coverage means that all outliers are found by action
items, and a 100% match means that all action items are covered by outliers. From our
results, we took the best out of both measures because in the first case the outliers of the
system are only a part of the action items (because they have really higher values than
the average), and in the second case there are more outliers because the threshold has
been lowered compared to the average files of the project.

150

Project (Java) Jacoco HoDoKu Freemind JFreeChart
Number of functions 1620 2231 4003 7851
OD Untest. 13 6 30 32
AI Untest. 5 23 4 10
OD & AI Untest. 5 6 4 10
Coverage 38% 100% 13% 31%
Matching 100% 26% 100% 100%
Overall intersection 100% 100% 100% 100%

Results are very good: in almost all cases we find an optimum intersection between
action items and outliers, with a fair (i.e. low) number of artefacts. The Mesa project is
the only exception, with some distinct outliers identified by both methods (AI & OD) –
which is a very interesting feature, as we will see later on.

Project (C) Evince Agar Amaya Mesa
Number of functions 2818 4277 7206 11176
OD Untest. 3 5 1 24
AI Untest. 13 17 448 76
OD & AI Untest. 3 5 1 16
Coverage 100% 100% 100% 67%
Matching 23% 29% 0% 21%
Overall intersection 100% 100% 100% 67%

Figure 8.5 illustrates the repartition of detected files: in most cases one of the methods
finds more outliers than the other, except for the Mesa project which has specific outliers
detected by each method.

Figure 8.5: Untestable functions with Squore’s action items and with our outliers
detection method.

151

The Mesa project shows an interesting feature:
some functions are identified by the outliers but not
raised by action items. These are functions with a
really high value on one or two of their metrics, which
are not caught by the action items since their other
metrics have standard values. They are however
very difficult to read and test and deserve to be
highlighted. The three-dimensional plot on the right
clearly highlights these artefacts by showing their
difference as compared to the average of files.

8.4.3 Code cloning in functions

Inputs

Code cloning refers to the duplication of code inside a function. It is one of the favourite
Squore action items since it was introduced by our software engineering experts from
their experience with customers and it works quite well. It relies on the following two
metrics to identify potential duplicated code:

vocf is the vocabulary frequency. vocf > 10 reveals high reuse of the same vocabulary,
i.e. operands and operators.

vg is the cyclomatic number of the function. vg >= 30 reveals a complex control flow.

Algorithm

We use the adjboxStats R function for skewed distributions to get extreme values on each
metric, then apply a median-cut filter to remove lower values – we are not interested in
low-value outliers. Only artefacts that have both metrics in outliering values are selected.

= START R =
requ i r e (’ robustbase ’)
dim_cols <− nco l (p r o j e c t)
dim_rows <− nrow (p r o j e c t)
outs_a l l <− data . frame (matrix (FALSE, nrow = dim_rows , nco l = dim_cols))
colnames (outs_a l l) <− names (p r o j e c t)
outs_all$Name <− project$Name
f o r (i in 2 : nco l (outs_a l l)) {

myouts <− which (p r o j e c t [, i] %in% adjboxStats (p r o j e c t [, i]) $out) ;
outs_a l l [myouts , i] <− TRUE

}
f o r (i in 1 : nrow (outs_a l l)) {

nb <− 0 ;
f o r (j in 1 : dim_cols) {

nb<−nb+(i f (outs_a l l [i , j]==TRUE) 1 e l s e 0)
} ;
outs_a l l [i ,1+dim_cols] <− nb

152

}
outs_a l l <− outs_a l l [order (outs_a l l [,1+ dim_cols] , d e c r ea s ing=T) ,]
outs <− subset (

outs_al l ,
out s_a l l [,1+ dim_cols] == max(outs_a l l [,1+ dim_cols]))

outs <− pro j e c t_funct i on [row . names (outs [, 0]) , "Name"]
= END R =

Results

In the tables shown below, OD lines show the number of artefacts identified by the
outliers detection method while AI lines give the number of artefacts found by traditional,
statically-defined action items. OD & AI lines give the number of artefacts that are found
by both techniques.

Project (Java) Jacoco HoDoKu Freemind JFreeChart
Number of functions 2818 4277 7206 11176
OD Clone. 3 8 10 13
AI Clone. 1 8 0 8
OD & AI Clone. 1 6 0 7
Coverage 33% 75% 0% 54%
Matching 100% 75% 100% 88%
Overall intersection 100% 75% 100% 88%

Project (C) Evince Agar Amaya Mesa
Number of functions 2818 4277 7206 11176
OD Clone. 2 6 10 35
AI Clone. 2 6 154 80
OD & AI Clone. 2 6 10 33
Coverage 100% 100% 100% 94%
Matching 100% 100% 6% 41%
Overall intersection 100% 100% 100% 94%

The method works quite well (although less than the above-mentionned untestable
functions) on the set of C and Java projects used for validation: the intersection between
action items and outliers varies from 75% to 100%. Null values could be marked as 100%
since they simply show that the action items did not find any artefacts with the defined
static thresholds.

The number of outliers output is always relatively small, even when action items
return too many artefacts (as it is the case for Amaya). Figure 8.6 depicts the number of
functions with code cloning for each project; our algorithm finds a relatively small number
of functions, even when Squore action items find none (e.g. for Freemind) or too many of
them (e.g. for Amaya). These results have been cross-validated with our staff of experts:

153

Figure 8.6: Code cloning in functions with Squore’s action items and with our outliers
detection method.

the cases where outliers detection didn’t find the same artefacts than the classical action
items (as for Mesa, HoDoKu or JFreeChart) still have potential for refactoring because
the latter cannot catch smaller pieces of duplicated code nor duplicates that have been
intensively edited (but are still subject to refactoring).

8.5 Summary

The technique presented here, based on automatic outliers detection, is more specific than
statically computed triggers and highlights types of files that are not discovered by classic
techniques. The overall method is more robust: it will highlight extreme values regardless
of the shape of the software. This robustness is demonstrated by two examples: we could
detect specific untestable files within Mesa, and some code cloning functions within the
Freemind project, where Squore could not identify them. Another great advantage of
our method is the fair number of files or functions selected: we usually get less than 20-30
artefacts, even on bigger projects.

This Squore Lab was the first one to implement the Maisqual roadmap as defined in
section 4.5, and the first pragmatic implementation of data mining techniques into the
Squore product. We first relied on Knitr documents as working drafts to run test drives
and improve the methods, so we were confident enough in our results before implementing
a clean integration in Squore. The Knitr documents were applied on the Maisqual data
sets, and a different set of projects was used for the validation – since the validation of the
full chain (from project parsing to results visualisation in Squore interface) had to start
from project sources, not flat csv files. The final integration in Squore is the ultimate
achievement of this work.

The integration is now fully functional and provides, out-of-the-box, the three detection

154

techniques described here. This first round of outliers should be expanded and improved
with the specific knowledge of people involved with customers’ needs. The next step is to
involve consultants in the definition of new rules and let them write their own detection
techniques, thanks to the modular and easy-to-use architecture. New rules should be
added to the standard configuration of the Squore product as people become more
confident with it.

The Squore Labs outliers project took 28 man-days to complete, from requirements
definition to delivery. Flavien Huynh worked on the integration into Squore and I
worked on the modular architecture for configuration scripts. Accuracy of results has
been considered satisfactory enough by the product owner to be integrated in the product
trunk and should be made available in the upcoming 2014 major release of Squore.

155

156

Chapter 9

Clustering

Clustering, or unsupervised classification, is a very useful tool to automatically define
categories of data according to their intrinsic characteristics. It has been intensively
applied in areas like medecine, document classification or finance but until now has not
given practical and applicable results to software.

However there is a need for unsupervised classification methods in software engineering.
They offer two advantages: firstly, they automatically adapt values and thresholds to the
context of the analysis, which answers some of the issues of the huge diversity of software
projects. Secondly they allow for autonomous rating of artefacts without the need of
supervisers. This second point is mandatory for the pragmatic application of such metrics,
since most projects will not take the time to train a model before using it.

In this chapter we investigate the use of unsupervised classification algorithms to define
optimised groups of artefacts for quality assessment and incremental improvement. This
is an on-going work: we still need to explore new metrics, test new clustering algorithms,
find better optimisations for the different input parameters, and interact with experts to
fine-tune our methods.

Section 9.1 quickly reviews some existing work on software measurement data clustering.
In sections 9.2 and 9.3 we describe the problems we want to address in the context
of Squore: automatic scaling of measures and multi-dimensional automatic quality
assessment. We illustrate the paths we followed and the early results for both axes.
Finally section 9.4 lists some of the pitfalls and semantic issues that arose during this
work and proposes directions for future research. Appendix C.2 shows a few extracts of
the Knitr documents we used.

9.1 Overview of existing techniques

Clustering methods

This chapter investigates two clustering methods: k-means and hierarchical clustering.
K-means determines group membership by calculating the centroid (or mean for univariate
data) for each group. The user asks for a number of clusters, such that the within-cluster

157

sum of squares from these centres is minimised, based on a distance measure like Euclidean
or Manhattan. Other techniques may use different ways to compute the center of clusters,
like selecting the median instead of the mean for k-medoids [115, 24].

K-means cluster visualisation is usually achieved by plotting coloured data points;
centers of clusters can also be displayed to show the gravity centers of clusters. An example
of k-means clustering on file sloc for Ant 1.8.1 is shown in the left plots of figure 9.1
page 161.

The R implementation of hierarchical clustering [134, 115, 24] we are using is
hclust from the stat [147] package. It implements two distances, Euclidean and Man-
hattan, and several aggregation methods: Ward, Complete, Single, Average, Median,
McQuitty, Centroid. Hierarchical clustering results are usually displayed through a
dendogram as shown for Ant 1.7.0 files in figure 3.4 on page 52.

We are more specifically looking for evenly distributed clusters: having all items rated
at the same level is not very useful. Furthermore, with evenly distributed clusters, one
has enough examples to practically compare files with different ratings and identify good
and bad practices.

The objective of hierarchical clustering is to find under-
lying structures in the data’s characteristics. Depending
on the type of data considered, the number of natural
clusters may differ and establishing a fixed number of
groups may be inaccurate. Almeida et al. propose in [3]
an improved method for hierarchical clustering that au-
tomatically find the natural number of clusters, if any.
Outliers are filtered before the analysis and re-attached
to identified clusters afterwards, which considerably in-
crease the robustness of the algorithm.

Usage of clustering

K-means clustering was applied by Herbol [88] on time series to detect feature freeze
before milestones in Eclipse projects. Zhong et al. [200] apply two different clustering
algorithms (namely k-means and neural-gas) to software measurement data sets to ease
the inspection process by experts: instead of evaluating thousands of software components,
experts only had to look at 20 to 30 groups at most. They also apply various classifiers to
fault-related metrics and compare the results with the expert-based classification, showing
large false positive rates in some cases (between 20 and 40 %). Naib [136] also uses
k-means to classify fault-related data on large C projects to estimate fault-proneness of
software components.

In [6] Antonellis et al. use the analytical hierarchy process1 to weigh expert-based
1AHP is a decision making technique that allows consideration of both qualitative and quantitative

aspects of decisions [156]. It reduces complex decisions to a series of one-to-one comparisons and then
synthesizes the results.

158

evaluations of the maintainability of the project’s files. k-attractors [104] clustering is
then applied to the resulting maintainability measure and conclusions are manually drawn
from the different groups identified and their correlations with individual metrics.

9.2 Automatic classification of artefacts

9.2.1 Squore indicators

In Squore, measures (i.e. raw numbers like 1393 SLOC) are matched against scales
to build indicators. These are qualitative levels allowing practitioners to instantly know
if the measured value can be considered as good, fair, or poor in their context. Most
scales have 7 levels, because it is a number that is easily captured by the mind. Squore
uses designations from level A to level G in a way that mimics the well-known Energy
Efficiency Rating logo. In our tests, we will use 7 clusters since we want to check our
results against ratings proposed by Squore.

Scales are defined as static intervals: triggering values are defined during the con-
figuration phase of the measurement program and should not be modified after going
live, because doing so would impact the rating of artefacts and threaten the temporal
consistency of the analysis.

9.2.2 Process description

From the consulting perspective, the typical execution of a Squore assessment process is
as follows:

 The customer has first to define her requirements for the quality assessment program.
 The consultant helps the customer to select a model that best fits her needs and

identified requirements – Squore has a predefined set of models for many different
types of industry.

 When the quality model is defined the consultant has to calibrate it: meaningful
values have to be chosen for the rating of artefacts. As an example, complex-
ity thresholds are lowered for critical embedded systems with strict certification
constraints.

Calibration is achieved by running the quality model on real data sources and projects
and make it match the customer’s feeling of what is good, fair or bad. The intent is to
enforce the representation condition of the measurement program.

9.2.3 Application: the auto-calibration wizard

We wanted a non-intrusive tool to help in the calibration phase of a Squore deployment
without interfering with consultant’s usual methods. For this we wrote a Knitr document
taking as input the results of a project analysis run, and proposing scales tailored to

159

the project values. The document can be applied on a large data set containing several
components to compute optimised thresholds for each metric from the full range of values
in the projects. Since a quality model is supposed to be used by many projects of various
sizes and with different types of constraints such proposals are useful to setup balanced
ranges for the very context of the customer.

Univariate k-means clustering is applied to each metric individually and various
information is displayed to help the consultant calibrate the model. The limits or
triggering values that define the clusters are inferred from the computed repartition, and
the document proposes an adapted range with the associated repartition of artefacts. It
draws colourful plots of data to visually grasp the repartition of artefacts according to
their rating. Table 9.1 shows the table output by the document for the vg and sloc
metrics on the Ant 1.8.1 release files. For each metric, we give the number of items in the
cluster, and the minimum and maximum values delimiting the cluster’s boundaries.

Table 9.1: Auto-calibration ranges for Ant 1.8.1 file metrics.

Metric Levels A B C D E F G
vg Number of items in cluster 707 45 27 6 111 275 5
vg Min range 0 15 38 72 117 183 286
vg Max range 14 37 71 115 167 234 379
sloc Number of items in cluster 167 27 531 8 85 53 305
sloc Min range 2 48 107 192 328 529 952
sloc Max range 47 106 188 320 513 855 1617

The first (upper) row in figure 9.1 shows the repartition of file artefacts for Ant 1.8.0 on
the vg metric, with the k-means clustering algorithm and with Squore static values. The
next pictures show the same output for the sloc metric. These figures clearly show that
the repartition of artefacts is much more equilibrated in the case of automatic clustering
than with static threholds. This is especially true for higher values, which is considered
to be good for highlighting artefacts that have outstanding characteristics.

One can notice that the range proposed by the algorithm is discontinuous. We modify
it to make it a continuous scale and include outer limits so the full range spans from 0 to
infinite. In the VG example, the following scale is proposed from the above ranges. It is
formatted according to the structure of Squore XML configuration files, so practitioners
just have to copy and paste the desired scale:

<Scale scaleId="SCALE_NAME">
<ScaleLevel levelId="LEVELA" bounds="[0;14]" rank="0" />
<ScaleLevel levelId="LEVELB" bounds="]14;37]" rank="1" />
<ScaleLevel levelId="LEVELC" bounds="]37;71]" rank="2" />
<ScaleLevel levelId="LEVELD" bounds="]71;115]" rank="4" />
<ScaleLevel levelId="LEVELE" bounds="]115;167]" rank="8" />
<ScaleLevel levelId="LEVELF" bounds="]167;234]" rank="16" />
<ScaleLevel levelId="LEVELG" bounds="]234;[" rank="32" />

160

(a) vg with k-means. (b) vg with Squore.

(c) sloc with k-means. (d) sloc with Squore.

Figure 9.1: Examples of univariate classification of files with k-means and Squore.

161

</Scale>

9.3 Multi-dimensional quality assessment

The idea of multi-dimensional quality assessment is that a few metrics can summarise
most of the variations on a given quality factor across artefacts. We would like to use it
to autonomously identify artefacts that have good, fair or bad quality characteristics.

For that purpose we applied a multivariate clustering algorithm to a carefully selected
subset of metrics that are known to contribute to some quality characteristic. We relied on
the experience and knowledge of our software engineering experts to select metrics. Two
examples of empirical findings are provided: first we investigated maturity (as formulated
by embedded engineers), which is often sought to be roughly dependent on the size
(measured as sloc), complexity (measured as vg) and number of non-conformities (ncc)
of an artefact. We then investigated testability, which is estimated using control-flow
complexity (vg), the maximum level of nesting in a control structure (nest), and the
number of potential execution paths (npat).

Figure 9.2: Computation of testability in Squore’s ISO9126 OO quality model.

In order to validate our findings, we wanted to compare the clusters produced when the
algorithm is applied on these three metrics with a measure of testability for the artefacts.
Squore produces such a measure, based on the above-mentioned metrics plus a number
of others like the number of non-conformities to testability rules, data and control flow
complexity, and the number of classes and functions. The static aggregation method used
in Squore for the ISO 9126 OO quality model is depicted in figure 9.2.

Figure 9.3 shows the results of multi-dimensional clustering and compares them with
the ratings output by Squore. Plots in the first row deal with maturity; the clustered
repartition is obviously driven by the sloc metric while Squore draws a fuzzy repartition
in the perspective of the two plotted metrics. Results are similar for the testability
comparison pictured on the second raw.

The shape of clusters is clearly not similar with both methods (Squore and k-means).
This can be partially explained however, and improved: firstly Squore relies on a

162

(a) Squore results for maturity. (b) Clustering for sloc, vg and ncc.

(c) Squore results for testability. (d) Clustering for vg, nest and npat.

Figure 9.3: Examples of multivariate classification of files for Ant 1.8.0.

number of extra parameters, which grasp different aspects of testability and introduce
new dimensions to the knowledge space. The impact of these measures on results should
be investigated, and the set of selected metrics modified or expanded. Secondly another
bias lies in the visualisation of these repartitions: Squore output should be visualised
on different axes to identify the driving metrics. Doing so we should be able to find
a better perspective to visually identify ranges of values and make them match the
k-means-clustered repartition of artefacts.

We extracted some arbitrary files and manually checked them for their maintainability
and testability with our team of experts. Results were good, i.e. files that were considered
by the clustering algorithm to be hard to test really were, which confirms that the metrics
selected still show interesting properties for the considered quality characteristic. We
consider however that more work is needed to build a more consistent and more verifiable

163

automatic assessment method.

9.4 Summary & future work

Univariate clustering shows interesting insights on an optimised repartition of artefacts
to establish a scale on individual indicators. We wrote Knitr documents to demonstrate
the application of such methods on real projects and proposed means to apply them
seamlessly in the course of a typical Squore analysis. This research looks promising
because the clusters defined on the artefacts are much more in equilibrium than with the
Squore product and correspond to a natural repartition of values. Doing so brings useful
insights on the categories to be watched and helps in the understanding and improvement
of software quality of artefacts (files, classes, functions) in a product.

We also investigated multi-dimensional analysis to look for groups of artefacts with
similar quality characteristics. By using a few carefully selected metrics, we clustered files
from a projects and compared the results with categories of artefacts selected by Squore
and our team of experts, according to some high-level quality attribute (testability,
analysability, maturity). Results are incomplete on that part, however, and need to
be further refined because of the semantic and practical applicability issues described
hereafter.

 If scales are automatically computed for each project, then files cannot be compared
across projects: if a project is very well written and another shows poor maintain-
ability, G-rated files from the former may be equivalent in terms of quality to the
A-rated files from the latter. This implies a redefinition of some of the Squore
assumptions and mechanisms to ensure consistency of results.

 One great advantage of Squore is it really describes the computation mechanism
used to aggregate measures to upper quality characteristics, allowing users to discover
why they get a bad (or good!) rating. The drawback of automatic clustering methods
is that they do not always clearly show which metric or set of metrics is responsible
for rating an artefact in an unexpected category. We need to develop techniques to
explain the classification of artefacts, by identifying which metrics or combination
of metrics have unusal values.

There a few solutions that should be investigated, though. Other clustering algorithms
should be evaluated for this task, with better robustness and pertinence for software
measurement data. Methods based on the Mahalanobis distance look promising [24, 95],
and new papers and ideas specifically targeted at software measurement data are being
published regularly [6, 107, 3, 136] and should be checked in this context.

Once again, one of the very advantages of clustering methods is they do not need to
be supervised; we believe this is a determinant factor of success and practical utilisation
in real-world software development projects since users or managers have no time (nor
possibly will or knowledge) to do much configuration. Practitioners also often consider

164

that an automous algorithm is more objective than a manually-trained one. This Squore
Lab is currently being investigated means to improve this aspect and integrate them
smoothly in the process.

The clustering methods we implemented unveiled interesting paths to be investigated,
but are not mature enough as for now to be used in a production environment. The
calibration document has been presented to developers and consultants, and we are in
the process of setting up a protocol to get feedback from the field, and make it a part of
the typical Squore calibration process. However the culmination of this Squore Lab is
to be integrated in the Squore product as an extension of the existing facilities in the
capitalisation base.

165

166

Chapter 10

Correlating practices and attributes of
software

Regression analysis allows one to find an underlying structure or relationships in a set of
measures (see section 3.5 in data mining chapter). One of the intents of the Maisqual
project was to investigate the impact and consequences of development practices on
the software metrics we defined. Examples of correlations we are looking for include
e.g. scm_commits and scm_fixes to be correlated with the cyclomatic complexity
(i.e. more modifications are needed when the file is complex), or the respect of coding
conventions to be correlated to the number of distinct committers.

This chapter dives into the links that exist between the behaviour and characteristics
of a software project, including its code, the people working on it, and its local culture.
As defined earlier we wrote a Knitr document to uncover the basics of the problem, then
refined it to address more specific patterns or issues.

Section 10.1 presents the approach used during this work, and section 10.2 describes
the documents developed to achieve stated goals. Preliminary results are discussed in
section 10.3. Section 10.4 states some early conclusions and guidelines for future work on
this subject.

10.1 Nature of data

The early stages of this work took place when we wanted to extract practices-related
information from software repositories. Most rule-checking tools typically indicate trans-
gressions as findings attached to lines of code. Two transformations are usually applied
to these findings in order to extract numerical information: either counting the number
of violations on the artefact (may it be an application, folder, file, class or function), or
counting the number of observed rules on the artefact (however often transgressed rules
are violated).

In this case, Development practices are primarily identified by the number of rule
violations on artefacts. Some metrics can be considered as practices as well, since they

167

may be representative of a development policy or custom. Examples of such metrics
include the number of lines with only braces (brac), which denotes a coding convention
style, and the comment rate (comr) as a measure of code documentation. Of course,
rule-related metrics like rokr and ncc are considered for the practice analysis. The
attributes of software are the characteristics of the project or product we identified when
building the data sets – see section 6.1 for a comprehensive list of metrics gathered.

One of the assumptions of regression analysis is the independence of the base measures.
This is not true for all of our measures, through; the following list gives some of the most
obvious combinations observed in the metrics we gathered.

sloc = eloc + brac

lc = sloc + blan + cloc−mloc

lc = (eloc + brac) + blan + cloc−mloc

comr = ((cloc + mloc)× 100)/(eloc + cloc))

This is even less true if we consider the high correlation among line counting metrics
or between size and complexity metrics [63, 64]. For these reasons we need to investigate
and take into account the independence of variables during the analysis and interpretation
of results.

Non-robust regression algorithms are by definition sensible to noise. Rule-checking
tools are known to have false positives [183]. We tried to avoid rules that engendered to
much debate as for their relevance or reliability regarding the number of false-positives.
Nevertheless, since we measure the number of warnings of tools (and not real issues in the
code), noise associated to false positives is assumed to be constant over the data set.

10.2 Knitr investigations

We wrote a first Knitr document to automatically apply various regression mechanisms
to the file-level data sets we generated. It featured a quick statistics summary of data,
a study on the relationships between the metrics themselves, and the analysis of rules.
Three categories of rules are defined, depending on the tool used: Squore, PMD and
Checkstyle. Since they target different types of checks (see section 6.2), results vary
greatly from one set to another.

We computed pairwise regression using different algorithms and techniques; this gave
us full control over the regression commands and parameters, and provided us with access
points for plotting specific values. The methods investigated were:

 The standard lm command from the stats package can be used to apply many
different regression models. We first tried to apply linear correlation, using the
following formula:

y = ax+ b

The returned lm object supplies the adjusted R2 to assess the goodness of fit.

168

 We also applied quadratic regression using lm and the following formula:

y = ax2 + bx+ c

We relied on the adjusted R2 of the fit to assess its goodness.
 The MASS package introduces the rlm command for robust regression using an M

estimator [196]. In rlm fitting is done by iterated re-weighted least squares. Initial
estimate is obtained from a least-squares fit using weights.

 The robustbase package provides another command for robust regression: lmrob.
It computes an MM-type regression estimator as described by Yohai [196] and Koller
and Stahel [114]. We configure the call to use a 4-steps sequence: the initial estimator
uses a S-estimator which is computed using the Fast-S algorithm []. Nonsingular
subsampling [113] is used for improved robustness. Next steps use a M-regression
estimate, then a Design Adaptive Scale [114] estimate and again a M-estimator.

We applied these regressions on two different sets: the first to uncover the correlations
among metrics (i.e. metricA ∼ metricX), as explained in the previous section, and the
second to explain metrics with rules (i.e. metricA ∼ ruleX). Results are delivered in
tables giving for each metric the adjusted R2 for each metrics and rules they are regressed
with.

Extracts of the Knitr document are provided in appendix C.3 page 272, showing some
correlation tables on metrics and rules at the file level for all releases of JMeter. For
the sake of conciseness and visualisation comfort, we highlighted specific values in the
generated tables. For pure metrics correlation tables, values lower than 0.01 are not
displayed and values higher than 0.9 are typeset in bold. For metrics-rules correlation
tables, values higher than 0.6 are typeset in bold.

10.3 Results

At the file level, applying correlation on metrics with rules as explanatory variables gives
very poor results. For linear and polynomial regression, adjusted R2 varies between 0 and
0.4 with most values being under 0.2. Robust algorithms simply do not converge,

Unsurprisingly, sets of metrics that have been identified to be correlated in the pure-
metrics correlation matrix (as stated in previous section) change in similar proportions. As
an example, the table generated for the JMeter releases set of files, provided in appendix
C.3 on page 278, shows that the linelength check is slightly1 correlated with the number
of statements (0.619), and also with sloc (0.568), ncc (0.731), lc (0.55) and eloc
(0.617). If we take the table of pure-metrics correlations shown in appendix C.3 on page
274 we observe these metrics are indeed highly correlated (Adjusted R2 being between
0.864 and 0.984).

1At least compared to the remaining of the table. Statisticians consider there is a correlation for
values higher than 0.9.

169

The repartition of rule violations is peculiar: on the rule set we selected many rules
are rarely violated, while other rules target common harmless warnings and hence show
a large number of violations. This is highlighted on figure 10.1: most rules have their
third quartile set to zero (i.e. the box is not visible), and values strictly positive (i.e. at
least one violation) are most of the time considered as outliers. The redness of outliers
shows that the density of violations in files rapidly decreases. Most contravened rules
are immediately identified with their box popping over the x axis; they are r_return
(Squore), interfaceistype (PMD), and javadocmethod (PMD).

Figure 10.1: Repartition of violations by rule for Ant 1.8.0 files.

This creates a very sparse matrix, which causes standard algorithms to fail. The Knitr
document produced many warnings stating that the rlm could not converge because the
matrix is singular. lmrob consistently yields it could not converge in the allowed number
of iterations. We raised the number of iterations from 20 (the default) to 40 and 60, and
tried different methods (e.g. different estimators and parameters, and alternative defaults

170

for lmrob as proposed in [114]) without success.

10.4 Summary & future work

In this chapter, we described the experiments performed to establish relationships between
practices, measured as violations to known coding rules, and metrics. We applied various
regression methods and eventually could not corroborate verifiable relationships using
these methods. Although much work has to be done with other, different techniques
before giving definitive judgement, the following intermediate conclusions can already
been drawn:

 This is not as trivial as it seems. We identified two bottlenecks: firstly measurement
of daily development practices is subject to many biases and can be measured from
different perspectives. Secondly the nature of data is unusual and gets us out of the
scope of comfortable, more classical shapes and treatments.

 Using metrics as output and rules as explanatory variables, linear and polynomial
regression methods give very bad results with adjusted R squared values in the
range [0 : 0.33]. We could not establish any definitive relationship on the data sets
analysed with these algorithms.

 Rules-related data, when extracted from rule checking tools, are generally sparse
and have an overall unusual shape, which causes many algorithms to fail. Classical
robust regression (rlm or lmrob algorithms) is not able to converge on such data.

Results are incomplete as for now and need further work to show reliable and meaningful
conclusions. From what we have learned, a few paths may be worth exploring:

 Further reflecting on how practices can be discovered in software metrics and
rule findings may bring novel insights to the initial question. Different means to
measure similar characteristics may open new perspectives by introducing new data,
with more usable distributions, or may enable the use of different algorithms (such
as those used for process discovery, see [96, 97, 192, 86]).

 We applied pairwise only correlations, but the underlying structure of the measured
system may involve an arbitrary combination of variables. While this would be a
time-consuming task, investigating multiple regression would bring useful insights
into the complex structure of influences among metrics.

 There are many different types of robust algorithms for regression analysis. Logis-
tic, more elaborated non-parametric, or sparse-data targeted regression techniques
may be more successful. Also transforming data (e.g. normalisation, principal
components analysis) may leverage its accessibility for some algorithms.

171

172

Part IV

Conclusion

173

Initial objectives

During these three years we learned to apply methods from the statistical and data mining
field onto domain-specific concerns of software engineering. The roadmap we roughly
followed is depicted in figure 10.2: we elaborated a semantic, methodological and technical
framework to generate safe data sets; these were used in specific workshops. Conclusions
and consequences were either developed in Squore Labs or expressed in papers and ideas.

Figure 10.2: Synopsis of Maisqual.

What has been done

The Maisqual project allowed us to uncover how data mining methods can help in software
engineering practices and quality assessment. During these three years, we were able to:

 Study the most prominent and advanced techniques in the intersecting fields of
software engineering and data mining to exchange ideas with people and expand
the knowledge of the Squoring Technologies team and practitioners we met.

 Setup a reliable framework, both on the methodological and pragmatic implementa-
tion aspects. This permitted us to communicate our preliminary findings, and to
submit articles to conferences and journals.

 Run a restricted set of projects to address specific software engineering concerns,
which led to direct implementation of new features into the Squore product and
pragmatic application in projects.

175

This last part, composed of the Squore Labs, has been the very projects that
enabled us to draw practical conclusions from Maisqual. The Outliers detection and
Clustering Squore Labs contributed practical developments to Squoring Technologies
and enabled us to provide useful tools and methodological help for the consultants. The
Correlation Squore Lab, albeit not yet complete, has already provided some good insights
pertaining to the nature of data and the tooling needed for further analysis. Besides
the implementation of novel ideas into pragmatic applications, it was an opportunity for
Squoring Technologies and our collaborators to build a bridge with the academic field
of data mining and its thrilling contributions.

After taking a step back, doing an extensive research project was difficult to achieve
in the designated time of two days a week. We had to put aside many interesting ideas
and constantly check the scope of the project to make it fit into the restricted time frame
and still deliver valuable and practical results. Here are a few of the interesting paths
that we did not follow up on but are undoubtedly very promising.

What lies ahead?

A few papers are on the way, in collaboration with researchers from inria, and should be
submitted during the course of 2014 to software engineering conferences.

Following the observations we made on the distribution of software metrics in section
4.2.2, we are in the process of writing an article on the shapes of software. The idea
is to investigate power laws [36] in metric distributions, and a first Knitr has already
been written that implements common checks on distribution functions. Some studies
targeting power laws in software have already been published recently for graph-oriented
measures of software, e.g. for software dependency graphs [129] or for various software
characteristics as in Concas et al. [38], but to our knowledge there is no comprehensive
study on the various software measures we are dealing with. We are working with Martin
Monperrus and Vincenzo Musco from the INRIA Lille team.

The selection of metrics using techniques including principal component analysis, is
another area of great interest, especially for Squore: the capacity to know what metrics
should be selected for analysis would economise resources and time for the engine. There
are a few studies that investigate dimensionality reduction for software metrics for specific
concerns like cost estimation [179], however we believe that a more generic method can
be used to uncover the main drivers of software analysis.

There is still room for improvement in the Squore Labs that were run with Squoring
Technologies. The outliers detection project should be enriched with new outliers
detection techniques like LOF, k-means or Mahalanobis distance, and new types of outliers
should be investigated. We want to assist Squoring Technologies consultants to apply
their acquired knowledge and experience to the writing of algorithms for specific customer
needs. The clustering Squore Lab is not finished and will be continued, either to
setup a configuring wizard for the team and customers or to be directly integrated into
the Squore product. Last but not least, the Squore Lab working on correlations

176

between metrics and practices needs to be completed and its conclusions publicised
and integrated into the body of knowledge.

Throughout the course of this study some interesting ideas had emerged. They could
not be investigated in depth: they may not have been in the scope of this thesis, and the
allocated time for research was filled to capacity so we were forced to carefully select our
goals. Nevertheless, these ideas have been put on a back burner for later study because
they could quite possibly provide meaningful conclusions or important features for the
Squore product.

We finally need to better communicate about our work and results to foster
our collaboration with practitioners and to investigate new uses and applications for
our research. First, the data sets should be publicised, with a thorough description of
the metrics extracted (definition, samples as requirements for reproduction, and links
between metrics), a clear description of the retrieval process, a quick analysis showing
important events on the project, and examples of usage for the data set with working R
code samples. New projects will be added with time thanks to the automated architecture
we setup. Second, the Maisqual wiki will be further elaborated upon and updated with
new information and insights resulting from our work.

177

178

Bibliography

[1] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. ACM
SIGMOD Record, 30(2):37–46, June 2001.

[2] M. Al-Zoubi. An effective clustering-based approach for outlier detection. European
Journal of Scientific Research, 2009.

[3] J. Almeida and L. Barbosa. Improving hierarchical cluster analysis: A new method
with outlier detection and automatic clustering. Chenometrics and Intelligent
Laboratory Systems, 87(2):208–217, 2007.

[4] S. Amasaki, T. Yoshitomi, and O. Mizuno. A new challenge for applying time series
metrics data to software quality estimation. Software Quality Journal, 13:177–193,
2005.

[5] C. Andersson and P. Runeson. A replicated quantitative analysis of fault distributions
in complex software systems. IEEE Transactions on Software Engineering, 33(5):273–
286, 2007.

[6] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C. Makris, E. Theodoridis, C. Tjortjis,
and Nikos Tsirakis. Employing Clustering for Assisting Source Code Maintainability
Evaluation according to ISO/IEC-9126. In Intelligence Techniques in Software
Engineering Workshop, 2008.

[7] N. Antonellis, P. and Antoniou, D. and Kanellopoulos, Y. and Makris, C. and
Theodoridis, E. and Tjortjis, C. and Tsirakis. A data mining methodology for
evaluating maintainability according to ISO/IEC-9126 software engineering–product
quality standard. Special Session on System Quality and Maintainability-SQM2007,
2007.

[8] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix. Using static
analysis to find bugs. IEEE Software, 25(5):22–29, 2008.

[9] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The Missing
Links: Bugs and Bug-fix Commits. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering, pages 97–106,
2010.

179

[10] B. Baldassari. SQuORE : une nouvelle approche de mesure de la qualité des projets
logiciels. Génie Logiciel, 103:9–14, 2012.

[11] B. Baldassari. SQuORE: A new approach to software project quality measurement. In
International Conference on Software & Systems Engineering and their Applications,
2012.

[12] B. Baldassari and F. Huynh. Software Quality: the Eclipse Way and Beyond. In
EclipseCon France, 2013.

[13] B. Baldassari, F. Huynh, and P. Preux. De l’ombre à la lumière : plus de visibilité
sur l’Eclipse. In Extraction et Gestion des Connaissances, 2014.

[14] B. Baldassari and P. Preux. A practitioner approach to software engineering data
mining. In 36th International Conference on Software Engineering, 2014.

[15] B. Baldassari and P. Preux. Outliers Detection in Software Engineering data. In
36th International Conference on Software Engineering, 2014.

[16] B. Baldassari and P. Preux. Understanding software evolution: The Maisqual Ant
data set. In Mining Software Repositories, number July, 2014.

[17] T. Ball. The Concept of Dynamic Analysis. In Software Engineering—ESEC/FSE’99,
pages 216–234, 1999.

[18] V. Barnett and T. Lewis. Outliers in Statistical Data (Wiley Series in Probability &
Statistics). Wiley, 1994.

[19] V. R. Basil and A. J. Turner. Iterative enhancement: A practical technique for
software development. IEEE Transactions on Software Engineering, 4:390–396,
1975.

[20] V. Basili and J. Musa. The future generation of software: a management perspective.
Computer, 24(9):90–96, 1991.

[21] K. Beck, A. Cockburn, W. Cunningham, M. Fowler, M. Beedle, A. van Bennekum,
J. Grenning, J. Highsmith, A. Hunt, and R. Jeffries. The Agile Manifesto. Technical
Report 1, 2001.

[22] K. Beck and W. Cunningham. Using pattern Languages for Object-Oriented
Programs. In Object-Oriented Programming, Systems, Languages & Applications,
1987.

[23] I. Ben-Gal, O. Maimon, and L. Rokach. Outlier detection. In Data Mining and
Knowledge Discovery Handbook, pages 131–147. Kluwer Academic Publishers, 2005.

[24] P. Berkhin. A survey of clustering data mining techniques. In Grouping multidi-
mensional data, pages 25–71. 2006.

180

[25] J. Bloch. Effective Java (2nd Edition). Addison-Wesley, 2008.

[26] B. W. Boehm. A spiral model of software development and enhancement. Computer,
21(5):61–72, 1988.

[27] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod, and M. J. Merrit.
Characteristics of Software Quality, volume 1. Elsevier Science Ltd, 1978.

[28] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software
quality. In Proceedings of the 2nd international conference on Software engineering,
pages 592–605, San Francisco, California, United States, 1976. IEEE Computer
Society Press.

[29] G. Box, G. Jenkins, and G. Reinsel. Time series analysis: forecasting and control.
Wiley, 2013.

[30] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Local Outlier Factor:
Identifying Density-Based Local Outliers. ACM SIGMOD Record, 29(2):93–104,
June 2000.

[31] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCor-
mack, R. Nord, and I. Ozkaya. Managing technical debt in software-reliant systems.
In Proceedings of the FSE/SDP workshop on Future of software engineering research,
pages 47–52, 2010.

[32] O. Burn. Checkstyle, 2001.

[33] G. Canfora and L. Cerulo. Impact analysis by mining software and change request
repositories. In 11th IEEE International Symposium on Software Metrics, pages
1–9, 2005.

[34] S. Cateni, V. Colla, and M. Vannucci. Outlier Detection Methods for Industrial
Applications. Advances in robotics, automation and control, pages 265–282, 2008.

[35] V. Chandola, A. Banerjee, and V. Kumar. Outlier Detection : A Survey. ACM
Computing Surveys, 2007.

[36] A. Clauset, C. R. Shalizi, and M. E. Newman. Power-law distributions in empirical
data. SIAM review, 51(4):661–703, 2009.

[37] W. Cleveland. Visualizing data. Hobart Press, 1993.

[38] G. Concas, M. Marchesi, S. Pinna, and N. Serra. Power-Laws in a Large Object-
Oriented Software System. IEEE Transactions on Software Engineering, 33(10):687–
708, 2007.

[39] D. Cook and D. Swayne. Interactive and Dynamic Graphics for Data Analysis:
With R and GGobi. 2007.

181

[40] R. Cooper and T. Weekes. Data, models, and statistical analysis. 1983.

[41] M. J. Crawley. The R Book. Wiley, 2007.

[42] P. B. Crosby. Quality is free: The art of making quality certain, volume 94. McGraw-
Hill New York, 1979.

[43] W. Cunningham. The WyCash portfolio management system. ACM SIGPLAN
OOPS Messenger, 4(2):29–30, 1992.

[44] D. Defays. An efficient algorithm for a complete link method. The Computer
Journal, 20(4):364–366, Apr. 1977.

[45] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner. Software quality
models: Purposes, usage scenarios and requirements. In ICSE 2009 Workshop on
Software Quality, pages 9–14, 2009.

[46] W. Deming. Out of the crisis: quality, productivity and competitive position. Cam-
bridge University Press, 1988.

[47] J. Deprez, K. Haaland, F. Kamseu, and U. de la Paix. QualOSS Methodology and
QUALOSS assessment methods. QualOSS project Deliverable, 2008.

[48] J. Desharnais, A. Abran, and W. Suryn. Attributes Within ISO 9126: A Pareto
Analysis. Quality Software Management, 2009.

[49] M. Diaz and J. Sligo. How software process improvement helped Motorola. IEEE
Software, 14(5):75–81, 1997.

[50] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster analysis of
execution profiles. In Proceedings of the 23rd international conference on Software
engineering, pages 339–348, 2001.

[51] D. Dixon-Peugh. PMD, 2003.

[52] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P.-N. Tan. Data
mining for network intrusion detection. In NSF Workshop on Next Generation Data
Mining, pages 21–30, 2002.

[53] R. Dromey. Cornering the Chimera. IEEE Software, 13(1):33–43, 1996.

[54] R. G. Dromey. A Model for Software Product Quality. IEEE Transactions on
Software Engineering, 21(2):146–162, 1995.

[55] F.-W. Duijnhouwer and C. Widdows. Capgemini Expert Letter Open Source
Maturity Model. Technical report, 2003.

[56] N. Eickelman. An Insider’s view of CMM Level 5. IEEE Software, 20(4):79–81,
2003.

182

[57] T. Eisenbarth. Aiding program comprehension by static and dynamic feature
analysis. In International Conference on Software Maintenance, 2001.

[58] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for
mining in a data warehousing environment. In Proceedings of the 24th Very Large
Data Bases International Conference, pages 323–333, 1998.

[59] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. Knowledge Discovery in
Database, 96:226–231, 1996.

[60] O. Fedotova, L. Teixeira, and H. Alvelos. Software Effort Estimation with Multiple
Linear Regression: review and practical application. Journal of Information Science
and Engineering, 2011.

[61] A. V. Feigenbaum. Total Quality Control 4th edition. McGraw-Hill Professional,
2006.

[62] N. Fenton. Software Measurement: a Necessary Scientific Basis. IEEE Transactions
on Software Engineering, 20(3):199–206, Mar. 1994.

[63] N. Fenton and M. Neil. Software metrics: roadmap. In Proceedings of the Conference
on the Future of Software Engineering, pages 357–370, 2000.

[64] N. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a complex
software system. IEEE Transactions on Software Engineering, 26(8):797–814, 2000.

[65] P. Filzmoser, R. Maronna, and M. Werner. Outlier identification in high dimensions.
Computational Statistics & Data Analysis, 52(3):1694–1711, 2008.

[66] L. Finkelstein and M. Leaning. A review of the fundamental concepts of measurement.
Measurement, 2(1):25–34, Jan. 1984.

[67] M. Fowler. Martin Fowler on Technical Debt, 2009.

[68] J. French. Field experiments: Changing group productivity. Experiments in social
process: A symposium on social psychology, 81:96, 1950.

[69] Friedrich Leisch. Sweave. Dynamic generation of statistical reports using literate data
analysis. Technical Report 69, SFB Adaptive Information Systems and Modelling
in Economics and Management Science, WU Vienna University of Economics and
Business, Vienna, 2002.

[70] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[71] D. A. Garvin. Managing Quality - the strategic and competitive edge. Free Press
[u.a.], New York, NY, 1988.

183

[72] M. Goeminne and T. Mens. Evidence for the pareto principle in open source software
activity. In Joint Proceedings of the 1st International workshop on Model Driven
Software Maintenance and 5th International Workshop on Software Quality and
Maintainability, pages 74–82, 2011.

[73] A. Gordon. Classification, 2nd Edition. Chapman and Hall/CRC, 1999.

[74] M. K. Gounder, M. Shitan, and R. Imon. Detection of outliers in non-linear time
series: A review. Festschrift in honor of distinguished professor Mir Masoom Ali on
the occasion of his retirement, pages 18—-19, 2007.

[75] H. Guéhéneuc, Y.G. and Guyomarc’h, J.Y. and Khosravi, K. and Sahraoui. Design
patterns as laws of quality. Object-oriented Design Knowledge: Principles, Heuristics,
and Best Practices, pages 105–142, 2006.

[76] A. Gupta, B. R. Mohan, S. Sharma, R. Agarwal, and K. Kavya. Prediction of
Software Anomalies using Time Series Analysis – A recent study. International
Journal on Advanced Computer Theory and Engineering (IJACTE), 2(3):101–108,
2013.

[77] D. A. Gustafson and B. Prasad. Properties of software measures. In Formal Aspects
of Measurement, Proceedings of the BCS-FACS Workshop on Formal Aspects of
Measurement, South Bank University, London, 5 May 1991, pages 179–193. Springer,
1991.

[78] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on Software
Engineering, 31(10):897–910, 2005.

[79] K. Haaland, A.-k. Groven, N. Regnesentral, R. Glott, and A. Tannenberg. Free/Libre
Open Source Quality Models - a comparison between two approaches. In 4th FLOS
International Workshop on Free/Libre/Open Source Software, volume 0, pages 1–2,
2010.

[80] T. Haley. Software process improvement at Raytheon. IEEE Software, 13(6):33–41,
1996.

[81] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A Systematic Literature
Review on Fault Prediction Performance in Software Engineering. pages 1–31, 2010.

[82] M. H. Halstead. Elements of Software Science. Elsevier Science Inc., 1977.

[83] H.-J. Happel and W. Maalej. Potentials and challenges of recommendation systems
for software development. In Proceedings of the 2008 international workshop on
Recommendation systems for software engineering, pages 11–15. ACM, 2008.

[84] L. Hatton. The chimera of software quality. Computer, 40(8):103–104, 2007.

184

[85] D. Hawkins. Identification of outliers, volume 11. Chapman and Hall London, 1980.

[86] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and M. W.
Godfrey. The MSR Cookbook. In 10th International Workshop on Mining Software
Repositories, pages 343–352, 2013.

[87] C. Hennig, T. Harabasz, and M. Hennig. Package ’fpc’: Flexible procedures for
clustering, 2012.

[88] S. Herbold, J. Grabowski, H. Neukirchen, and S. Waack. Retrospective Analysis of
Software Projects using k-Means Clustering. In Proceedings of the 2nd Design for
Future 2010 Workshop (DFF 2010), May 3rd 2010, Bad Honnef, Germany, 2010.

[89] I. Herraiz. A Statistical Examination of the Evolution and Properties of Libre
Software. In Proceedings of the 25th IEEE International Conference on Software
Maintenance (ICSM), pages 439–442. IEEE Computer Society, 2009.

[90] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. Forecasting the Number of
Changes in Eclipse Using Time Series Analysis. In Fourth International Workshop
on Mining Software Repositories (MSR’07:ICSE Workshops 2007), pages 32–32.
IEEE, May 2007.

[91] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, and D. M. German. On the predic-
tion of the evolution of libre software projects. In IEEE International Conference
on Software Maintenance, pages 405–414, 2007.

[92] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, 22(2):85–126, 2004.

[93] M. Ing and E. Georgiadou. Software Quality Model Requirements for Software
Quality Engineering. In 14th International Conference on the Software Quality
Requirement, 2003.

[94] ISO. ISO/IEC 9126 Software Engineering - Product Quality - Parts 1-4. Technical
report, ISO/IEC, 2005.

[95] G. S. D. S. Jayakumar and B. J. Thomas. A New Procedure of Clustering Based on
Multivariate Outlier Detection. Journal of Data Science, 11:69–84, 2013.

[96] C. Jensen and W. Scacchi. Applying a Reference Framework to Open Source
Software Process Discovery. In Proceedings of the 1st Workshop on Open Source in
an Industrial Context, 2003.

[97] C. Jensen and W. Scacchi. Data mining for software process discovery in open
source software development communities. Proc. Workshop on Mining Software
Repositories, pages 96–100, 2004.

185

[98] M. Jiang, S. Tseng, and C. Su. Two-phase clustering process for outliers detection.
Pattern recognition letters, 22(6):691–700, 2001.

[99] S. R. G. Jones. Was There a Hawthorne Effect? American Journal of Sociology,
98(3):451, Nov. 1992.

[100] H.-W. Jung, K. Seung-Gweon, and C.-S. Chung. Measuring Software Product
Quality: A Survey of ISO/IEC 9126. IEEE Software, 21(05):88–92, Sept. 2004.

[101] J. M. Juran, F. M. Gryna, and R. Bingham. Quality control handbook. McGraw-Hill,
third edition, 1974.

[102] H. Kagdi, M. Collard, and J. Maletic. A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. Journal of Software
Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

[103] S. H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[104] Y. Kanellopoulos. k-Attractors: A clustering algorithm for software measurement
data analysis. In 19th IEEE International Conference on Tools with Artificial
Intelligence, pages 358–365, 2007.

[105] C. Kaner and W. P. Bond. Software engineering metrics: What do they measure
and how do we know? Methodology, 8(6):1–12, 2004.

[106] N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional
nearest neighbor queries. ACM SIGMOD Record, 26(2):369–380, 1997.

[107] J. Kaur, S. Gupta, and S. Kundra. A k-means Clustering Based Approach for
Evaluation of Success of Software Reuse. In Proceedings of International Conference
on Intelligent Computational Systems (ICICS’2011), 2011.

[108] D. Kelly and R. Sanders. Assessing the Quality of Scientific Software. In First
International workshop on Software Engineering for Computational Science and
Engineering, number May, Leipzig, Germany, 2008.

[109] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Data mining
for predictors of software quality. International Journal of Software Engineering
and Knowledge Engineering, 9(5):547–563, 1999.

[110] K. Khosravi and Y. Guéhéneuc. On issues with software quality models. In The
Proceedings of the 11th Working Conference on Reverse Engineering, pages 172–181,
2004.

[111] B. Kitchenham and S. Pfleeger. Software quality: the elusive target. IEEE Software,
13(1):12–21, 1996.

186

[112] D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.

[113] M. Koller. Nonsingular subsampling for S-estimators with categorical predictors.
Technical report, 2012.

[114] M. Koller and W. Stahel. Sharpening wald-type inference in robust regression for
small samples. Computational Statistics & Data Analysis, 55(8):2504–2515, 2011.

[115] S. Kotsiantis and P. Pintelas. Recent advances in clustering: A brief survey. WSEAS
Transactions on Information Science and Applications, 1(1):73–81, 2004.

[116] Y. Kou, C.-T. Lu, S. Sirwongwattana, and Y.-P. Huang. Survey of fraud detection
techniques. In 2004 IEEE International Conference on Networking, Sensing and
Control, pages 749–754, 2004.

[117] P. Kruchten, R. Nord, and I. Ozkaya. Technical debt: from metaphor to theory and
practice. IEEE Software, 29(6):18–21, 2012.

[118] M. Lanza and R. Marinescu. Object-oriented metrics in practice: using software
metrics to characterize, evaluate, and improve the design of object-oriented systems.
2006.

[119] M. Last, M. Friedman, and A. Kandel. The data mining approach to automated
software testing. In Proceedings of the 9th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 388–396, 2003.

[120] J. Laurikkala, M. Juhola, and E. Kentala. Informal identification of outliers in
medical data. In Proceedings of the 5th International Workshop on Intelligent Data
Analysis in Medicine and Pharmacology, pages 20–24, 2000.

[121] A. Lazarevic, L. Ertoz, and V. Kumar. A comparative study of anomaly detection
schemes in network intrusion detection. Proc. SIAM, 2003.

[122] J.-L. Letouzey. The SQALE method for evaluating Technical Debt. In Third
International Workshop on Managing Technical Debt (MTD), pages 31–36. IEEE,
2012.

[123] J.-L. Letouzey and T. Coq. The sqale analysis model: An analysis model compliant
with the representation condition for assessing the quality of software source code.
In Second International Conference on Advances in System Testing and Validation
Lifecycle, pages 43–48, 2010.

[124] S. D. Levitt and J. A. List. Was There Really a Hawthorne Effect at the Hawthorne
Plant? An Analysis of the Original Illumination Experiments. American Economic
Journal: Applied Economics, 3(1):224–238, Jan. 2011.

187

[125] T. W. Liao. Clustering of time series data — a survey. Pattern Recognition,
38(1):1857–1874, 2005.

[126] R. Lincke, J. Lundberg, and W. Löwe. Comparing software metrics tools. In
Proceedings of the 2008 International Symposium on Software Testing and Analysis,
pages 131–142, New York, New York, USA, 2008. ACM Press.

[127] X. Liu, G. Kane, and M. Bambroo. An intelligent early warning system for software
quality improvement and project management. Journal of Systems and Software,
2006.

[128] P. Louridas. Static Code Analysis. IEEE Software, 23(4):58–61, 2006.

[129] P. Louridas, D. Spinellis, and V. Vlachos. Power laws in software. ACM Transactions
on Software Engineering and Methodology, 18(1):1–26, Sept. 2008.

[130] T. McCabe. A complexity measure. Software Engineering, IEEE Transactions on,
(4):308–320, 1976.

[131] J. McCall. Factors in Software Quality: Preliminary Handbook on Software Qual-
ity for an Acquisiton Manager. Information Systems Programs, General Electric
Company, 1977.

[132] M. Mendonca and N. Sunderhaft. Mining software engineering data: A survey.
Technical report, 1999.

[133] D. C. Montgomery, E. A. Peck, and G. G. Vining. Introduction to Linear Regression
Analysis, 4th edition Student Solutions Manual (Wiley Series in Probability and
Statistics). Wiley-Interscience.

[134] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. The
Computer Journal, 26(4):354–359, 1983.

[135] N. Nagappan, T. Ball, and B. Murphy. Using historical in-process and product met-
rics for early estimation of software failures. In Proceedings of the 17th International
Symposium on Software Reliability Engineering, pages 62–74, 2006.

[136] B. B. Naib. An Improved Clustering Approach for Software Quality Analysis.
International Journal of Engineering, Applied and Management Sciences Pradigms,
05(01):96–100, 2013.

[137] Navica Software. The Open Source Maturity Model is a vital tool for planning open
source succes. Technical report, 2009.

[138] L. C. Noll, S. Cooper, P. Seebach, and A. B. Leonid. The International Obfuscated
C Code Contest.

188

[139] D. Okanović and M. Vidaković. Software Performance Prediction Using Linear
Regression. In Proceedings of the 2nd International Conference on Information
Society Technology and Management, pages 60–64, 2012.

[140] A. Origin. Method for Qualification and Selection of Open Source software (QSOS),
version 1.6. Technical report, 2006.

[141] H. M. Parsons. What Happened at Hawthorne?: New evidence suggests the
Hawthorne effect resulted from operant reinforcement contingencies. Science (New
York, N.Y.), 183(4128):922–32, Mar. 1974.

[142] M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability Maturity Model, version
1.1. Technical report, 1993.

[143] M. C. Paulk, K. L. Needy, and J. Rajgopal. Identify outliers, understand the Process.
ASQ Software Quality Professional, 11(2):28–37, 2009.

[144] E. Petrinja, R. Nambakam, and A. Sillitti. Introducing the OpenSource Maturity
Model. In 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development, pages 37–41. IEEE, May 2009.

[145] C. Phua, V. Lee, K. Smith, and R. Gayler. A Comprehensive Survey of Data
Mining-based Fraud Detection Research. arXiv preprint arXiv:1009.6119, page 14,
Sept. 2010.

[146] D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in empirical software
engineering. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, pages 362–371. IEEE Computer Society, Nov.
2011.

[147] R Core Team. R: A Language and Environment for Statistical Computing, 2013.

[148] E. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy, 1999.

[149] W. J. Reed. Power-Law Adjusted Survival Models. Communications in Statistics-
Theory and Methods, 41(20):3692–3703, 2012.

[150] M. Riaz, E. Mendes, and E. Tempero. A Systematic Review of Software Main-
tainability Prediction and Metrics. In Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pages 367–377,
2009.

[151] M. Robillard and R. Walker. Recommendation systems for software engineering.
IEEE Software, 27(4):80–86, 2010.

[152] W. Robinson. Ecological correlations and the behavior of individuals. International
journal of epidemiology, 15(3):351–357, 2009.

189

[153] P. Rousseeuw, C. Croux, V. Todorov, A. Ruckstuhl, M. Salibian-Barrera, T. Verbeke,
M. Koller, and M. Maechler. robustbase: Basic Robust Statistics. R package version
0.9-10., 2013.

[154] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug finding tools for
Java. In 15th International Symposium on Software Reliability Engineering, pages
245–256, 2004.

[155] J. A. Ryan and J. M. Ulrich. xts: eXtensible Time Series, 2013.

[156] T. L. Saaty. Fundamentals of decision making and priority theory: with the analytic
hierarchy process. Rws Publications, 1994.

[157] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos. The SQO-OSS quality model:
measurement-based open source software evaluation. In Open source development,
communities and quality, pages 237–248. Springer, 2008.

[158] N. Schneidewind. Methodology for validating software metrics. IEEE Transactions
on Software Engineering, 18(5):410–422, 1992.

[159] M. Shaw. Prospects for an Engineering Discipline of Software. IEEE Software,
(November):15–24, 1990.

[160] W. Shewhart. Economic control of quality of manufactured product. Van Nostrand,
1931.

[161] Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object Oriented
Design. 1993.

[162] R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster method.
The Computer Journal, 16(1):30–34, Jan. 1973.

[163] E. Simmons. When Will We be Done Testing? Software Defect Arrival Modeling
Using the Weibull Distribution. In Northwest Software Quality Conference, Portland,
OR, 2000.

[164] E. Simmons. Defect Arrival Modeling Using the Weibull Distribution. International
Software Quality Week, San Francisco, CA, 2002.

[165] G. Singh and V. Kumar. An Efficient Clustering and Distance Based Approach
for Outlier Detection. International Journal of Computer Trends and Technology,
4(7):2067–2072, 2013.

[166] K. Singh and S. Upadhyaya. Outlier Detection : Applications And Techniques. In
International Journal of Computer Science, volume 9, pages 307–323, 2012.

[167] J. F. Smart. Java Power Tools. O’Reilly Media, 2008.

190

[168] R. Sokal and C. Michener. A statistical method for evaluating systematic relation-
ships. University of Kansas Scientific Bulletin, 28:1409–1438, 1958.

[169] S. Sowe, R. Ghosh, and K. Haaland. A Multi-Repository Approach to Study the
Topology of Open Source Bugs Communities: Implications for Software and Code
Quality. In 3rd IEEE International Conference on Information Management and
Engineering, 2011.

[170] M.-A. Storey. Theories, methods and tools in program comprehension: Past, present
and future. In 13th International Workshop on Program Comprehension (IWPC
2005). IEEE Computer Society, 2005.

[171] Sun. Code Conventions for the Java Programming Language. Technical report,
1999.

[172] Q. Taylor and C. Giraud-Carrier. Applications of data mining in software engineering.
International Journal of Data Analysis Techniques and Strategies, 2(3):243–257,
July 2010.

[173] C. P. Team. CMMi® for Development, Version 1.1. Technical report, 2002.

[174] C. P. Team. CMMI® for Development, Version 1.3. Technical report, Carnegie
Mellon University, 2010.

[175] P. Teetor. R Cookbook. O’Reilly Publishing, 2011.

[176] V. Todorov and P. Filzmoser. An Object-Oriented Framework for Robust Multivari-
ate Analysis. Journal of Statistical Software, 32(3):1–47, 2009.

[177] L. Torgo. Data Mining with R, learning with case studies. Chapman and Hall/CRC,
2010.

[178] F. Tsai and K. Chan. Dimensionality reduction techniques for data exploration. In
6th International Conference on Information, Communications & Signal Processing,
pages 1–5. IEEE, 2007.

[179] M. Turan and Z. \c{C}ataltepe. Clustering and dimensionality reduction to de-
termine important software quality metrics. In 22nd International Symposium on
Computer and Information Sciences, pages 1–6, Nov. 2007.

[180] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, 2002.

[181] A. Vetro’, M. Torchiano, and M. Morisio. Assessing the precision of FindBugs by
mining Java projects developed at a university. In 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), pages 110–113. Ieee, May 2010.

[182] J. Voas. Assuring software quality assurance. IEEE Software, 20(3):48–49, 2003.

191

[183] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb. An Evaluation
of Two Bug Pattern Tools for Java. In 2008 International Conference on Software
Testing, Verification, and Validation, pages 248–257. Ieee, Apr. 2008.

[184] A. I. Wasserman, M. Pal, and C. Chan. Business Readiness Rating Project. Technical
report, 2005.

[185] L. Westfall and C. Road. 12 Steps to Useful Software Metrics. Proceedings of
the 17th Annual Pacific Northwest Software Quality Conference, 57 Suppl 1(May
2006):S40–3, 2005.

[186] J. A. J. Wilson. Open Source Maturity Model. Technical report, 2006.

[187] C. Wohlin, M. Höst, and K. Henningsson. Empirical research methods in software
engineering. Empirical Methods and Studies in Software Engineering, pages 7–23,
2003.

[188] W. Wong, A. Moore, G. Cooper, and M. Wagner. Bayesian network anomaly pattern
detection for disease outbreaks. In ICML, pages 808–815, 2003.

[189] T. Xie. Bibliography on mining software engineering data, 2010.

[190] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data mining for software engineering.
IEEE Computer, 42(8):35–42, 2009.

[191] Y. Xie. Knitr: A general-purpose package for dynamic report generation in R.
Technical report, 2013.

[192] Q. Yang and X. Wu. 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making, 5(4):597–604, 2006.

[193] C. T. Yiannis Kanellopoulos. Interpretation of Source Code Clusters in Terms of
the ISO/IEC-9126 Maintainability Characteristics. In 12th European Conference on
Software Maintenance and Reengineering, pages 63–72, 2008.

[194] A. Ying. Predicting source code changes by mining revision history. PhD thesis,
2003.

[195] A. Ying and G. Murphy. Predicting source code changes by mining change history.
IEEE Transactions on Software Engineering, 30(9):574–586, 2004.

[196] V. Yohai. High breakdown-point and high efficiency robust estimates for regression.
The Annals of Statistics, 15:642–65, 1987.

[197] K.-A. Yoon, O.-S. Kwon, and D.-H. Bae. An Approach to Outlier Detection of
Software Measurement Data using the K-means Clustering Method. In Empirical
Software Engineering and Measurement, pages 443–445, 2007.

192

[198] H. Zhang. On the distribution of software faults. Software Engineering, IEEE
Transactions on, 2008.

[199] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering algorithm
and its applications. Data Mining and Knowledge Discovery, 1(2):141–182, 1997.

[200] S. Zhong, T. Khoshgoftaar, and N. Seliya. Analyzing software measurement data
with clustering techniques. IEEE Intelligent Systems, 19(2):20–27, Mar. 2004.

[201] S. Zhong, T. Khoshgoftaar, and N. Seliya. Unsupervised learning for expert-
based software quality estimation. In Proceeding of the Eighth IEEE International
Symposium on High Assurance Systems Engineering, pages 149–155, 2004.

[202] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version histories to
guide software changes. IEEE Transactions on Software Engineering, 31(6):429–445,
2005.

193

194

Appendices

195

Appendix A

Papers and articles published

197

198

SQuORE: a new approach to software project assessment.

Boris Baldassari
SQuORING Technologies

76, Alles Jean Jaurs,
31000 Toulouse - France

www.squoring.com
boris.baldassari@squoring.com

July 10, 2013

Abstract

Quality has a price. But non-quality is even more expensive. Knowing the cost and consequences of
software assets, being able to understand and control the development process of a service, or quickly
evaluating the quality of external developments are of primary importance for every company relying on
software. Standards and tools have tried with varying degrees of success to address these concerns, but
there are many difficulties to be overcome: the diversity of software projects, the measurement process –
from goals and metrics selection to data presentation, or the user’s understanding of the reports. These
are situations where the SQuORE business intelligence tool introduces a novel decision-based approach to
software projects quality assessment by providing a more reliable, more intuitive, and more context-aware
view on quality. This in turn allows all actors of the project to share a common vision of the project
progress and performance, which then allows efficient enhancing of the product and process. This position
paper presents how SQuORE solves the quality dilemma, and showcases two real-life examples of indus-
trial projects: a unit testing improvement program, and a fully-featured software project management model.

Key words: software quality, key performance indicators, trend analysis, measurement, quality models,
process evaluation, business intelligence, project management.

1 Introduction

Despite an increasing interest in software quality,
many still think about quality achievement as an
expensive and unproductive process. On the other
hand, as Shaw [23] pointed out a few years earlier,
the software engineering discipline is currently in the
process of maturing: in the past decade, new meth-
ods and new processes have grown, standards have
been published, and the many years of experience
gathered in the field brought much feedback and a

new maturity to the discipline. The time has come
for a new era in business intelligence [5] for software
projects.

In the second section of this paper, we lay down the
ground foundations of our approach to software mea-
surement and present the state of practice, along with
some terms and concepts about software development
quality and management. In section three, we discuss
the SQuORE approach to software projects assess-
ment, with its features and benefits. Section four

1

further expands the scope of quality assessment by
showing two real-life implementations that demon-
strate the use of SQuORE, with unit testing priori-
tisation and project- and schedule dashboards and
models.

2 State of practice

2.1 The cost of failures

There are many examples of software project failures,
and their associated costs – either in human or finan-
cial losses. All of them originate from non-quality
or lack of control on development. Some well-known
example bugs in the past decades include:

• Therac-25: six deaths before beeing fixed, took
two years to diagnose and fix [15].

• Mars Climate Orbiter: race conditions on bus
priority, system rebooted continuously and robot
eventually crashed[19].

• Patriot missile target shifted 6 meters every hour
due to float precision bug. 28 soldiers killed in
Dhahran [25].

• Ariane 5 infamous buffer overrun crash due to
abusive reuse of Ariane 4 software[16]: 500 mil-
lions $ pure loss.

• AT & T failure of 1990: software upgrade of
switch network led to a 9 hours crash, traced
back to a missing break[20]. 60 Million $ lost
revenue.

According to a study conducted by the U.S. De-
partment of Commerce’s National Institute of Stan-
dards and Technology (NIST), the bugs and glitches
cost the U.S. economy about 59.5 billion dollars a
year[21]. The Standish Group CHAOS 2004 [24] re-
port shows failure rates of almost 70%.

2.2 Standards for software products
and processes

Many quality-oriented standards and norms have
been published in the last decades, some focusing on

product quality (from Boehm [1] and McCall [18],
further simplified and enhanced by ISO 9126 [9]),
while other rather consider the process quality (e.g.
ISO/IEC 15504 [6] and CMMi [2]). More recently,
two quality assessment standards have been devel-
oped: SQALE [14, 13], a generic method indepen-
dent of the language and source code analysis tools,
mainly relying on technical and design debts, and ISO
SQuARE [7], the successor of ISO 9126, which is still
being developed. Furthermore, some domains have
their own de-facto standards: HIS and ISO 26262 [8]
for the automotive industry, or DO-178 [22] for the
aeronautics and critical embedded systems.

But some objections have been opposed to estab-
lished standards, because:

• they may be seen as mere gut-feeling and opin-
ions from experts, as pointed out by Jung et al
[10] for the ISO 9126, and

• they dont fit well every situation and view on
quality, as they are rather scope-fixed [11].

Another point, also related to the complexity and
diversity of software projects, is that published stan-
dards dont provide any pragmatic measures or tool
references, which leads to misunderstanding and mis-
conceptions of what is measured as an example, con-
sider the thousands of different ideas and concepts
behind the Mean Time To Failure metric [12].

2.3 Metrics for software quality mea-
surement

There is a huge amount of software-oriented met-
rics available in the literature. Examples of weidly-
used metrics include McCabe’s cyclomatic complex-
ity for control flow[17], Halstead’s complexity for data
flow[4], size or coupling measures. Each measure is
supposed to characterise some attributes of software
quality, and they have to be put together to give the
complete picture.

Another mean to assess software quality is the
number of non-conformities to a given reference. As
an example, if naming or coding conventions or pro-
gramming patterns have been decided, then any vi-
olations of these rules is supposed to decrease the

2

quality, because it threatens some of the characteris-
tics of quality, like analysability (for conventions), or
reliability (for coding patterns).

The concept of technical debt, coined by Ward Cun-
ningham in 1992 [3] and gaining more and more in-
terest nowadays, can be considered as the distance
to the desired state of quality. In that sense, it is
largely driven by the number and importance of non-
conformities.

The trend of software measurement globally
tends to multi-dimensional analysis [12]: quality or
progress of a software project or product is a compos-
ite of many different measures, reflecting its different
characteristics or attributes. The next step is the way
information can be aggregated and consolidated.

3 Principles of SQuORE

The purpose of SQuORE is to retrieve information
from several sources, compute a consolidation of the
data, and show an optimised report on software or
project state. The rating of the application is dis-
played on a common, eye-catching 7-steps scale which
allows immediate understanding of the results, as
shown in Figure 1.

Figure 1: The 7-levels SQuORE rating

3.1 Architecture

SQuORE analysis process can be broken down in
three separate steps: data providers that take care
of gathering inputs from different sources, the en-
gine, which computes the consolidation and rating
from the base measures gathered by data providers,
and the dashboard to present information in a smart
and efficient way.

3.2 Data Providers

As stated in our introduction, there are nowadays
many tools available, each one having a specific do-
main of expertise and an interesting, but partial, view
on quality. SQuORE brings in the glue and consis-
tency between them all, by importing this informa-
tion any type of input is accepted, from xml or csv
to Microsoft binary files and processing it globally.

The SQuORE analyser runs first. It is fast, does
not need third-party dependencies, and constitutes
a tree of artefacts corresponding to the items mea-
sured: source code, tests, schedule, hardware compo-
nents, or more generally speaking any kind of item
able to represent a node of the project hierarchy. In
addition, the SQuORE engine adds the findings and
information from external tools, attaching them to
the right artefacts with their values and meaning.

3.3 Data Consolidation

Figure 2: Artefacts and Quality Trees

Once the base measures have been collected,
SQuORE computes derived measures as defined in
the quality model and builds the quality hierarchy
for every node of the artefact tree, as shown in Fig-
ure 2.

3

3.3.1 Quality Models

Quality models define how data are aggregated and
summarised from the leaves up to the root artefact
(usually the application or project): base measures
collected by data providers are transformed into de-
rived measures and associated to the different at-
tributes of quality.

As stated before, there is no silver bullet for quality
models[11]: one has to tailor the assessment method,
considering the specific needs and goals of the de-
velopment. In many cases existing models1 consti-
tute a good start, and they should simply be fine-
tuned to fit most common needs. But for specific or
uncommon situations, SQuORE proposes everything
one would need in such a task, from basic operations
on measures to complex, cross-tree computations.

3.3.2 Metris, Scales, Indicators

Raw measures give the status of a characteristic,
without qualitative judgement. Indicators give this
information, by comparing the measure to a scale.
Scales define specific levels for the measure and their
associated rating, which allow fine-tuning the model
with specific thresholds and weights. As an example,
the well-known cyclomatic complexity metric [17] for
functions could be compared to a four levels scale,
such that:

• from 0 to 7 rating is A (very good) and weight
for technical debt is 0,

• from 7 to 15 rating is B (ok) and weight is 2,

• from 15 to 25 rating is C (bad) and weight is 4,

• above 25 rating is D (very bad) and weight is 16
because you really should refactor it.

Considering this, the cyclomatic complexity indicator
gives at first sight the status of the intended meaning
of the metric.

1The default SQuORE setup proposes several models and
standards: SQALE, ISO 9126 Maintainability and Automotive
HIS are available right out-of-the-box.

3.3.3 Action Items

Quite often, the dynamics of development depend on
many different factors: as an example, if a function is
quite long, has an important control complexity and
many non-conformities, and a poor comment rate,
then it should be really looked at although none of
these individual indicators, taken separately, would
be worse rising it. Action items serve this goal: the
quality officer can define triggers, which can be any
combination of indicators on the artefact tree, and
SQuORE will create action items if one or all criteria
are met. A helpful description about the problem and
its resolution is displayed as well. Because they can
be applied on any artefact type, the possibilities of
action items are almost limitless. They are often the
best way to implement experience-based heuristics,
and automate long, tedious, and error-prone checking
processes.

3.4 From Quality Assessment to
Project Monitoring

Quality assessment, as a static figure, is the first step
to project control: if you don’t know where you are,
a map won’t help. The next step is to monitor the
dynamics of the project, by following the evolution
of this static status across iterations – this can be
thought of as search-based decision making, as de-
scribed by Hassan et al. in [5]. SQuORE proposes
for this several mechanisms:

• Trends show at first sight how an artefact or at-
tribute of quality did evolve.

• Drill-downs, sorts and filters help identify
quickly what artefacts actually went wrong.

• The quality view helps understand why the rat-
ing went down, and what should be done to get
it back to a good state.

• Action items help identifying complex evolution
schemas, by specifying multiple criteria based on
artefacts, measures and trends.

4

4 Use Cases

4.1 General Feedback

From our experience, there are some common reac-
tions to a SQuORE evaluation:

• People are able to quickly identify issues and are
not overwhelmed by the amount of information,
which allows finding in a few minutes serious is-
sues like missing breaks. Specialised tools are
indeed able to uncover such issues, but due to
the sheer volume of results they generate, it is
not uncommon for end users to miss important
results.

• People are glad to see that their general feeling
about some applications is verified by pragmatic
evidence. This re-enforces the representativeness
of measurement and puts facts on words2.

• Developers are concerned by their rating: the
simple, eye-catching mark is immediately recog-
nised as a rating standard. Further investiga-
tions help them understand why it is so, and
how they could improve it3.

4.2 Unit Test Monitoring

One of our customers needed to know what parts of
software had to be tested first for maximum efficiency.
Until now, the process was human-driven: files to be
tested were selected depending on their history and
recent changes, complexity of their functions, and
their number of non-conformities. The team had de-
veloped home-grown heuristics gathered from years of
experience, with defined attributes and thresholds.

We built a model with inputs from two external
tools, QAC and Rational Test Real Time, and the
SQuORE analyser. From these, we defined four main
measures: non-conformities from QAC, RTRT, and
SQuORE, plus cyclomatic complexity. Weights and
computations were then selected in such a way that
the files would get exponential-like ratings: as an

2In other words: I told you this code was ugly!
3In other words: I suspected this part needed refactoring.

example, if a file had only one of these main mea-
sures marked as bad, it would get a weight of 2. For
two, three or four bad measures, it would get resp. a
weight of 8, 16 or 32. This allowed quickly identifying
the worst files in the artefact hierarchy.

Figure 3: Artefact filters

Folder ratings were computed according to the
number of bad files they had under their hierarchy
and their relative badness, which allowed focusing on
worst components easily by sorting the artefact tree
by folder ratings.

Action items were setup for the files that really
needed to be checked, because they had either really
bad ratings, or cyclomatic complexities or number of
non-conformities that exceeded by far the defined cri-
teria. Such action items allowed identifying problem-
atic files hidden in hierarchies of good or not-so-bad
files.

We were able to achieve the following goals:

• Define a standardised, widely-accepted mean of
estimating testing efforts.

• Reproduce some gut-feeling mechanisms that
had been thoroughly experienced and fine-tuned
along the years by human minds, without having
been explicitly formalised until now.

5

Dashboard graphs were setup to get immediate
visual information on the rate of bad files in com-
ponents. The evolution of component ratings also
helped to identify parts of software that tended to
entropy or bad testability, and take appropriate ac-
tions with development teams.

4.3 Project Monitoring

Figure 4: Example scorecards

Another experience encompassed a full software
project monitoring solution: the customer wanted
to have a factual and unified vision on the overall
progress of his developments.

SQuORE analyser was used for the source code
quality assessment. Additional data providers were
defined to retrieve data from change management,
tests, and scheduling (as the number of open/closed
tasks) tools.

Considering these entries, we defined the following
axes in the quality model, as shown in Figure 4:

• Are the quality objectives respected? – based on
the ISO 9126 maintainability assessment of code.

• Are we on-time? – an agile-like reporting on
tasks completion.

• Are we overwhelmed by new issues? – the
amount of defect reports waiting for treatments.

• Was the product deteriorated? – which reflects
the state of test coverage and success: regression,
unit, and system tests.

These axes are summarised in a global indicator
(Figure 5), showing the composite progress of the
project. In this case, we chose to take the worst sub-
characteristic as the global rating to directly identify
problems on progress.

Action items were developed to identify:

• Parts of code that had a bad maintainability rat-
ing, were not enough covered by tests, and got
many defect change requests.

• Schedule shifts, when the number of opened
tasks was too high for the remaining time and
many change requests were incoming (opened).

Figure 5: Project Quality model

The Jenkins continuous integration server was used
to execute SQuORE automatically on a daily basis.
Automatic retrieval of data and analysis was needed
to ensure reliability and consistency of data – the con-
stant availability being one of the keys to meaningful
data.

Dashboards were defined for the main concerns of
the project: evolution of the maintainability rating
on files, evolution of change requests treatment, and
failing tests. The scheduling information was repre-
sented using burn-down and burn-up charts, and dot
graphs with trends and upper- and lower- limits.

6

We were able to:

• Provide real-time information about current
state and progress of project. Web links to the
Mantis change management system even allowed
knowing exactly what actions are on-going.

• Get back confidence and control on project
to team leaders and developers by enabling a
crystal-clear, shared and consistent vision.

References

[1] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference
on Software engineering, pages 592–605, San
Francisco, California, United States, 1976. IEEE
Computer Society Press.

[2] CMMI Product Team. CMMI for Development,
Version 1.3. Technical report, Carnegie Mellon
University, 2010.

[3] Martin Fowler. Martin Fowler on Technical
Debt, 2004.

[4] Maurice H. Halstead. Elements of Software Sci-
ence (Operating and programming systems se-
ries). Elsevier Science Inc., New York, NY, USA,
1977.

[5] Ahmed E Hassan and Tao Xie. Software In-
telligence: The Future of Mining Software En-
gineering Data. In Proc. FSE/SDP Workshop
on the Future of Software Engineering Research
(FoSER 2010), pages 161–166. ACM, 2010.

[6] ISO IEC. Iso/iec 15504-1 – information tech-
nology – process assessment. Software Process:
Improvement and Practice, 2(1):35–50, 2004.

[7] ISO IEC. Iso/iec 25000 – software engineering –
software product quality requirements and eval-
uation (square) – guide to square. Systems En-
gineering, page 41, 2005.

[8] ISO. ISO/DIS 26262-1 - Road vehicles Func-
tional safety Part 1 Glossary. Technical report,
International Organization for Standardization
/ Technical Committee 22 (ISO/TC 22), 2009.

[9] ISO/IEC. ISO/IEC 9126 – Software engineering
– Product quality. 2001.

[10] Ho-Won Jung, Seung-Gweon Kim, and Chang-
Shin Chung. Measuring software product qual-
ity: A survey of iso/iec 9126. IEEE Software,
21:88–92, 2004.

[11] Stephen H. Kan. Metrics and Models in Software
Quality Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edi-
tion, 2002.

[12] C Kaner and Walter P. Bond. Software engineer-
ing metrics: What do they measure and how do
we know? In 10Th International Software Met-
rics Symposium, METRICS 2004, pages 1–12,
2004.

[13] Jean-louis Letouzey. The SQALE method for
evaluating Technical Debt. In 2012 Third Inter-
national Workshop on Managing Technical Debt,
pages 31–36, 2012.

[14] Jean-louis Letouzey and Thierry Coq. The
SQALE Analysis Model An analysis model com-
pliant with the representation condition for as-
sessing the Quality of Software Source Code. In
2010 Second International Conference on Ad-
vances in System Testing and Validation Life-
cycle (VALID), pages 43–48, 2010.

[15] Nancy Leveson and Clark S. Turner. An Investi-
gation of the Therac-25 Accidents. IEEE Com-
puter, 26(7):18–41, 1993.

[16] J.L. Lions. ARIANE 5 Flight 501 failure. Tech-
nical report, 1996.

[17] TJ McCabe. A complexity measure. Software
Engineering, IEEE Transactions on, (4):308–
320, 1976.

7

[18] J.A. McCall. Factors in Software Quality: Pre-
liminary Handbook on Software Quality for an
Acquisiton Manager. Information Systems Pro-
grams, General Electric Company, 1977.

[19] National Aeronautics and Space Administration.
Mars Climate Orbiter Mishap Investigation Re-
port. Technical report, National Aeronautics
and Space Administration, Washington, DC,
2000.

[20] Peter G. Neumann. Cause of AT&T network
failure. The Risks Digest, 9(62), 1990.

[21] National Institute of Standards and Department
of Commerce. Technology (NIST). Software er-
rors cost u.s. economy $59.5 billion annually,
2002.

[22] RTCA. DO-178B: Software Considerations in
Airborne Systems and Equipment Certification.
Technical report, Radio Technical Commission
for Aeronautics (RTCA), 1982.

[23] Mary Shaw. Prospects for an engineer-
ing discipline of software. IEEE Software,
(November):15–24, 1990.

[24] The Standish Group International Inc. The
Standish Group International Inc. Chaos Tech-
nical report. Technical report, 2004.

[25] United States General Accounting Office. Pa-
triot Missile Defense: Software Problem Led to
System Failure at Dhahran , Saudi Arabia. Tech-
nical report, United States General Accounting
Office, 1992.

8

SQuORE : une nouvelle approche
de mesure de la qualité

des projets logiciels

Boris Baldassari,

SQuORING Technologies, 76 Allées Jean Jaurès, 31000 Toulouse
Tel: +33 581 346 397, E-mail: boris.baldassari@squoring.com

Abstract : La qualité a un prix. Mais la non-qualité est encore plus chère. Connaître les coûts et la
valeur du patrimoine logiciel, mieux comprendre les équipes de développement, ou évaluer
rapidement la qualité d'un développement externalisé sont des activités centrales pour toute société
dont le fonctionnement s'appuie sur l'informatique. Des standards et outils ont été mis au point pour
adresser ces éléments, avec plus ou moins de succès, mais les difficultés sont nombreuses, de par la
diversité des projets logiciels, la mise en place effective d'un processus de mesure – de la sélection
des objectifs et métriques de mesure à l'affichage de l'information, ou la compréhension par les
acteurs du processus qualité. C'est pour ces situations que l'outil SQuORE introduit une approche
novatrice de la qualité logicielle, plus fiable, plus intuitive et plus contextuelle, appliquant les
techniques de la Business Intelligence à l’analyse des projets logiciels. SQuORE offre ainsi une
vision et une compréhension unifiées de l'état et des avancées de projets, permettant une
amélioration pragmatique du processus et des développements. Cet article présente comment la
solution SQuORE résout le dilemme de la qualité, et décrit deux cas issus de projets industriels : un
programme de priorisation des tests unitaires, et un modèle de processus plus complet, s'appuyant
sur de nombreux éléments hors code source.

1 Introduction

Malgré un intérêt croissant pour les notions de qualité logicielle, beaucoup la considèrent encore
comme une activité coûteuse et non productive. Mary Shaw[23] a étudié en 1990 l'évolution de la
discipline du génie logiciel, en la comparant avec d'autres sciences plus anciennes et plus matures
(telles que l’architecture) ; le génie logiciel n’en est qu’à ses premiers pas en tant que science, et la
discipline doit encore évoluer et gagner en maturité pour parfaire son développement. Mais de

nombreux progrès ont été faits ces dernières années, l’expérience s’accumule et l'heure est venue
d’une nouvelle ère pour le développement logiciel, avec l'analyse multidimensionnelle [12] et la
prise de décision par fouille de données [5].

Dans la seconde section de cet article, nous rappelons quelques termes et définitions, et récapitulons
l'état de l'art et des pratiques actuelles. La section 3 décrit l'approche choisie pour SQuORE, ses
fonctionnalités et avantages. La section 4 étend davantage le périmètre de l'analyse logicielle en
montrant deux exemples industriels d'implémentation de modèles de qualité, pour les tests et pour la
gestion de projet.

2 Etat de l'art

1 Coût de la non-qualité
Les exemples d'erreurs logicielles et leurs coûts associés ne manquent pas, que les pertes soient
humaines ou financières. Toutes trouvent leur origine dans un manque de qualité et de contrôle sur
le processus de développement. Quelques exemples connus sont reproduits ci-après :

 Therac-25 : surdosage de radiations sur un appareil médical : 6 morts et deux ans avant

correction [15].

 Marc Climate Observer : durée des tests insuffisante, le robot s'est écrasé suite au

remplissage de son espace mémoire [19].

 Missile Patriot : dérive de 6 mètres par heure due à un bug de conversion. 28 soldats tués à

Dhahran [25].

 Ariane 5 : réutilisation abusive de routines écrites pour Ariane 4, 500 M$ de pure perte [16].

 Crash du réseau AT&T (90's) : une mise à jour des routeurs rend le réseau inutilisable

pendant 9 heures, 60M$ de perte de revenus, cause du bug : un break manquant [20].

Le National Institute for Standards and Technology (NIST) a commandé en 2002 un rapport sur le
coût estimé des problèmes logiciels pour l'industrie américaine : 60 Milliard de dollars par an. Le
rapport technique CHAOS, édité par le Standish Group, faisait état en 2004 de taux d'échec des
projets logiciels de 70%. Les chiffres sont un peu meilleurs depuis, mais le constat reste accablant.

2 Standards pour produits et processus logiciels
De nombreux standards et normes dédiés à la qualité ont été produits par les organismes de
standardisation ces dernières décennies, certains adressant plutôt la qualité des produits (de Boehm
[1] à McCall [18], simplifié et amélioré par l'ISO 9126 [9]), tandis que d'autres adressent plutôt la
qualité du processus (ainsi ISO 15504 [6] et le CMMi [2]). Plus récemment, deux nouveaux
modèles ont vu le jour : SQALE [13, 14], une méthode indépendante du langage et des outils
d'analyse utilisés, qui s'appuie principalement sur les notions de dette technique et de design, et
l’ISO SQuaRE [7], successeur de l'ISO 9126 toujours en cours de développement. De plus, certains
domaines ont leur propre standards de-facto : HIS et ISO 26268 [8] pour l'industrie automobile ou

la DO-178 [22] pour l'aéronautique et les systèmes embarqués critiques.

Mais certaines objections à ces modèles ont vu le jour dans les dernières années :

 Les standards, et certains modèles en particulier, sont parfois considérés comme le jugement

subjectif et l'opinion d'experts, ainsi que relevé par Jung et al. [10] pour l'ISO 9126.

 Ils ne sont pas adaptés à tous les contextes et tous les besoins de qualité [11].

Un autre argument employé, toujours dans le cadre de la complexité et de la diversité des projets
logiciels, est qu'ils ne proposent aucune mesure, ni aucun outil pratique pour mettre en œuvre
l'analyse de qualité, ce qui provoque l'incompréhension de certaines mesures – à titre d'exemple,
considérons la métrique MTBF, ou Mean Time Between Failure et la myriade de définitions qui lui
sont associées [12].

3 Métriques pour la mesure de la qualité logicielle
La littérature propose un grand nombre de métriques orientées logiciel, telles que par exemple la
complexité cyclomatique, introduite par McCabe [17] pour mesurer la complexité du flot de
contrôle, ou les mesures d'Halstead [4], qui permettent de qualifier le flot de données.

Un autre moyen d'évaluer la qualité d'un code est le nombre de non-conformités à une certaine
référence. Par exemple, si des conventions de nommage et de codage ont été décidées, toute
violation à ces règles est supposée diminuer la qualité, ou certaines de ses sous-caractéristiques,
telles que l'analysabilité (pour les conventions de nommage) ou la fiabilité (pour les conventions de
codage).

La notion de dette technique, édictée la première fois par Ward Cunningham en 1992 [3], et
suscitant de plus en plus d'intérêt de nos jours, peut être vu comme la distance entre l'état actuel du
logiciel et l'état de qualité souhaité. En ce sens, la dette technique est largement liée au nombre de
non-conformités présentes dans l'application.

La tendance actuelle de la qualimétrie va vers l'analyse multidimensionnelle [12] : la qualité d'un
produit ou d'un processus logiciel est la composée d'un ensemble de caractéristiques ou attributs, et
donc de leurs mesures associées. Reste à savoir comment agréger et consolider ces mesures
composites.

3 Les principes de SQuORE
En quelques mots, SQuORE récupère des informations issues
de sources variées, agrège intelligemment les données et
présente un rapport optimisé de l'état du logiciel ou du projet.
La note principale de l'application est affichée sur une échelle
de 7 niveaux, reconnaissable par tous, et donnant une
indication visuelle immédiate sur les résultats de l'analyse.

Figure 1 : La notation SQuORE

4 Architecture
Le processus d'analyse SQuORE se décompose en trois étapes distinctes : la récupération des
données par les data providers, le calcul des données composées par le moteur (engine), et la
présentation des résultats, courbes et tableaux : le dashboard.

5 Data Providers
Ainsi que dit précédemment, il existe aujourd'hui de nombreux outils d'analyse de la qualité, chacun
avec son propre domaine d'expertise et apportant une vue intéressante, mais partielle, sur la qualité.
SQuORE rassemble ces informations et apporte la cohérence nécessaire à une utilisation intelligente
de ces données. Tous les types de données sont acceptés : XML, CSV, appels API, jusqu'aux
formats binaires, tels les anciens documents Microsoft Word.

L'analyseur SQuORE est exécuté en premier ; il est rapide, ne demande aucune compilation ou
dépendance, et construit l'arbre des artefacts (quel que soit leur type : code source, tests,
documentation, composants hardware, etc.) sur lesquels viendront se greffer les mesures issues
d'outils tiers.

6 Consolidation des données
Une fois les mesures de base collectées,
SQuORE agrège l'ensemble et calcule les
mesures dérivées définies dans le modèle
qualité pour chaque artefact, ainsi que
montré en Figure 2.

Modèles de qualité

Les modèles de qualité définissent la
manière dont sont agrégées les métriques,
des feuilles (fonctions, tests, etc.) jusqu'à la racine du projet : les mesures composites sont associées
à un attribut de la qualité, lui-même affecté à chaque artefact de l’arbre.

Il n'existe pas de modèle qualité parfait et universel : chacun doit adapter la méthode d'analyse, en
prenant en considération les besoins spécifiques et les objectifs de développement. Dans la plupart
des cas l'élaboration du modèle de qualité se fait à partir de l'un des modèles existants, qui est
adapté, pondéré différemment en fonction du contexte. Pour des situations plus complexes
SQuORE propose tous les moyens nécessaires à la mise en œuvre d'un nouveau modèle, des calculs
les plus simples aux requêtes les plus alambiquées.

Métriques, échelles, indicateurs

Les mesures en elles-mêmes donnent la valeur d'une caractéristique, sans jugement qualitatif. Les
indicateurs fournissent cette information en comparant la valeur à une échelle de niveaux adaptée,
ce qui permet de configurer les seuils et poids pour chaque niveau de jugement. Par exemple, le
célèbre nombre cyclomatique [17] au niveau des fonctions pourrait être réparti sur une échelle de 4
niveaux :

Figure 2 : Arbres des artefacts et de qualité

 De 1 à 7, la fonction est notée A (très bon) et son poids de dette technique est de 0.

 De 8 à 15, la fonction est notée B (ok), et son poids est de 2.

 De 16 à 25, la fonction est notée C (mauvais) et son poids est de 4,

 Au-delà de 25, la fonction est notée D (très mauvais) et son poids est de 16 – car un

refactoring est nécessaire.

Appliqué à cette échelle, l'indicateur du nombre cyclomatique donne immédiatement l'état de
complexité de la fonction, quels que soient les triggers utilisés pour le contexte local.

Action Items

Il arrive souvent qu'une caractéristique que nous souhaitons évaluer dépende de plusieurs mesures
de base. Par exemple, si une fonction est plutôt longue, a une complexité au-dessus de la moyenne,
de nombreuses violations et un faible taux de commentaire, il est certainement intéressant de s'y
pencher, alors même que chacun de ces éléments, pris individuellement, ne sont pas décisifs. Les
action items permettent de mettre en place des triggers qui se déclenchent sur une variété de critères
entièrement paramétrables. Une description du problème et des pistes pour sa résolution sont
affichées, avec l'emplacement précis des différents critères qui ont déclenché le trigger. Les triggers
peuvent être positionnés sur tout type d'artefact, ce qui fait d'eux un moteur puissant, par exemple
pour formaliser et automatiser des heuristiques issues de l'expérience et du savoir-faire des équipes.

7 De la qualité produit à la gestion de projets
L'évaluation de la qualité d'un produit ou d'un processus est la première étape pour mieux contrôler
ses développements (si l'on ne sait pas où l'on est, une carte est de peu d'utilité). L'étape suivante est
de surveiller l'évolution du projet au fil du temps et des versions, et d'en extraire les éléments
nécessaires à la prise de décision – processus décrit par Hassan et al. [5]. SQuORE propose de
nombreux mécanismes d'exploration pour aider à cette démarche :

 Les graphiques d'évolution montrent l'historique des mesures, et attributs de qualité au fil

des versions, et la tendance.

 Les nombreuses options de filtre et de tri permettent de localiser rapidement certains

éléments (e.g. éléments dégradés, nouvelles fonctions, fichiers les plus mal notés).

 L'arbre de qualité montre quelles caractéristiques de la qualité se sont dégradées :

maintenabilité du code, dérive du planning, tests échoués ?

 Les actions items permettent d'identifier des schémas d'évolution complexes, basés sur des

caractéristiques actuelles ou sur certaines tendances (par exemple, dégradation de la
testabilité, échecs nombreux sur les tests existants, diminution du taux de couverture de
test).

4 Cas d'utilisation

8 Retours immédiats des équipes
Lors de nos présentations de l'outil SQuORE, certaines situations et réactions reviennent
régulièrement:

 Les personnes sont capables d'identifier rapidement certains problèmes sérieux, sans être

submergées par le flot d'informations. Souvent, ces problèmes avaient déjà été détectés par
d'autres outils, mais l'information n'avait pas été identifiée ou suffisamment mise en valeur.

 Le sentiment général à propos de certaines applications connues des équipes est confirmé

par des preuves factuelles et démontrables. Cela démontre la représentativité de la mesure et
rend visibles et argumentables les pratiques de développement.

 Les développeurs sont concernés par la note de leur code et sa représentation simple et

concise. L'utilisation de l'échelle d'énergie, reconnue de tous, renforce le caractère de
standard (local) du modèle de qualité.

9 Modèle de test unitaire
Les délais de développement étant toujours trop courts pour le marché, il arrive parfois de devoir
prioriser l'effort de test pour maximiser la rentabilité et le nombre de problèmes trouvés avant
livraison, sachant que l'exécution complète des tests est de toute façon impossible dans les temps
impartis.

L'un de nos clients avait seulement quelques jours de test pour qualifier une version logicielle.
Jusque-là, le processus était essentiellement humain : les fichiers à tester étaient sélectionnés par
rapport à leur historique de test, leurs récents changements, la complexité des fonctions et le
nombre de violations détectées. A force d'expérience, certaines heuristiques avaient été développées
pour aider à l'identification des fichiers prioritaires, avec attributs et seuils de tolérance.

Nous avons donc construit un modèle de qualité dédié, prenant en entrées les sorties de deux outils
utilisés par l'équipe : QAC et Rational Test Real Time, plus l'analyseur SQuORE. Quatre mesures
ont été définies : nombre de non-conformités QAC, RTRT, SQuORE, et le nombre cyclomatique de
chaque fonction. La notation du modèle est construite sur une base exponentielle. Par exemple, si

un fichier a une seule de ses mesures en défaut, sa note
de dette technique sera de 2. Si deux, trois, ou quatre de
ces mesures sont en défaut, le fichier recevra une note
qui sera respectivement de 8, 16, 32. Cette structure
permet d'identifier rapidement les pires fichiers.

La notation des répertoires est basée sur le ratio de
« mauvais » fichiers récursivement trouvés sous ledit
répertoire, afin de mettre en relief les pires composants
du logiciel simplement en triant l'arbre des artefacts par
rapport à la notation de chaque répertoire.

Figure 3 : Filtres d’artefacts

Des action items spécifiques ont été mis en place pour les fichiers présentant un risque réel pour la
validation, parce qu'ils ont une complexité cyclomatique réellement importante, ont un nombre de
violations inquiétant ou une très mauvaise notation. Ces triggers permettent notamment de trouver
de mauvais éléments cachés dans des hiérarchies de « bons » fichiers ou composants.

Nous avons ainsi pu :

 Mettre en place un modèle de prédiction d'efforts de test formalisé, et reconnu par les acteurs

comme étant efficace. Le temps gagné à ce moment du processus est capital pour la mise sur
le marché, et permet d'exécuter davantage de tests, puisque la détection est plus rapide.

 Reproduire et automatiser une heuristique « au ressenti » qui était auparavant affaire

d'expérience et de savoir-faire. En le formalisant et en l'automatisant, les équipes ont pu
davantage se concentrer sur l'effort de test.

10 Suivi de projet
Une autre expérience industrielle concernait la
mise en place d'un suivi de projet plus complet,
avec progression du backlog, avancées des tests
et surveillance de la qualité logicielle.

L'analyseur SQuORE a été utilisé pour la
qualité produit (code Java), et des data
providers ont été mis en place pour récupérer
les informations des outils de gestion des
changements, test, et planning.

4 axes de qualité ont été définis par rapport à
ces entrées, résumés par les questions suivantes
(cf. l'approche de V. Basili : Goal-Question-
Metric [26]).

 « Est-ce que les objectifs de qualité sont respectés ? », basé sur la norme ISO9126.

 « Sommes-nous dans les temps? », utilisant les notions agiles de tâches.

 « Sommes-nous surchargés par les nouvelles requêtes ? », avec le nombre de bugs reportés

en attente de traitement.

 « Le produit s'est-il détérioré ? », qui reprend les résultats de test (couverture et exécution).

Ces axes sont ramenés sur un unique indicateur, montrant l'avancement global du projet. Dans ce
cas, la pire note trouvée parmi les sous-caractéristiques est utilisée en note globale, car il est
considéré comme nominal que chacun de ces indicateurs soit positif.

Nous avons développé des action items afin d'identifier :

 Les parties du logiciel (composants ou fichiers) qui ont une mauvaise note de

Figure 4: Scorecards de suivi de projet

maintenabilité, sont peu couverts par les tests, et sont concernées par beaucoup de
reports de bugs.

 Les dérives de planning, lorsque le nombre de tâches ouvertes est trop important et de

nombreux bugs sont ouverts.

L'automatisation des opérations de récupération des données, puis d'exécution de l'analyse et de
publication des résultats est un élément clef de la réussite d'un projet de qualimétrie [27] ; Jenkins a
donc été mis en place comme serveur d'intégration continue pour exécuter SQuORE régulièrement
(exécutions quotidienne et hebdomadaire).

Des dashboards spécifiques ont été mis en place pour
suivre aisément les critères importants de la gestion de
projet : maintenabilité, requêtes ouvertes, tâches en
attente, tests exécutés avec succès... Les informations
de planning ont été représentées par les graphiques
agiles de burn-up et burn-down.

Nous avons ainsi pu :

 Mettre en place un suivi quotidien et

consolidé de l'état d'avancement des
développements, avec surveillance des
régressions et de la qualité.

 Reprendre le contrôle du projet et redonner confiance aux acteurs, managers et

développeurs, en proposant une vision claire et concise, partagée et cohérente des
développements.

5 References

[1] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference on Software engineering , pages 592-605, San
Francisco, California, United States, 1976. IEEE Computer Society Press.

[2] CMMI Product Team. CMMI for Development, Version 1.3. Technical report, Carnegie Mellon
University, 2010.

[3] Martin Fowler. Martin Fowler on Technical Debt, 2004.

[4] Maurice H. Halstead. Elements of Software Science (Operating and programming systems se-
ries). Elsevier Science Inc., New York, NY, USA, 1977.

[5] Ahmed E Hassan and Tao Xie. Software Intelligence: The Future of Mining Software
Engineering Data. In Proc. FSE/SDP Workshop on the Future of Software Engineering Research
(FoSER 2010), pages 161-166. ACM, 2010.

Figure 5 : Arbre de qualité suivi de projet

[6] ISO IEC. ISO/IEC 15504-1 – Information Technology – Process assessment. Software Process:
Improvement and Practice, 2(1):35{50, 2004.

[7] ISO IEC. ISO/IEC 25000 – Software Engineering – software product quality requirements and
evaluation (SQuaRE) – guide to SQuaRE. Systems Engineering, page 41, 2005.

[8] ISO. ISO/DIS 26262-1 - Road vehicles Functional safety Part 1 Glossary. Technical report, In-
ternational Organization for Standardization / Technical Committee 22 (ISO/TC 22), 2009.

[9] ISO/IEC. ISO/IEC 9126 – Software Engineering – Product quality. 2001.

[10] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring software product qual-
ity: A survey of ISO/IEC 9126. IEEE Software, 21:88-92, 2004.

[11] Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[12] C Kaner andWalter P. Bond. Software engineering metrics: What do they measure and how do
we know? In 10Th International Software Metrics Symposium, METRICS 2004, pages 1-12, 2004.

[13] Jean-louis Letouzey. The SQALE method for evaluating Technical Debt. In 2012 Third Inter-
national Workshop on Managing Technical Debt, pages 31-36, 2012.

[14] Jean-louis Letouzey and Thierry Coq. The SQALE Analysis Model An analysis model compli-
ant with the representation condition for assessing the Quality of Software Source Code. In 2010
Second International Conference on Advances in System Testing and Validation Lifecycle (VALID),
pages 43-48, 2010.

[15] Nancy Leveson and Clark S. Turner. An Investigation of the Therac-25 Accidents. IEEE Com-
puter, 26(7):18{41, 1993.

[16] J.L. Lions. ARIANE 5 Flight 501 failure. Technical report, 1996.

[17] TJ McCabe. A complexity measure. IEEE Transactions on Software Engineering, (4):308-320,
1976.

[18] J.A. McCall. Factors in Software Quality: Preliminary Handbook on Software Quality for an
Acquisition Manager. Information Systems Programs, General Electric Company, 1977.

[19] National Aeronautics and Space Administration. Mars Climate Orbiter Mishap Investigation Re-
port. Technical report, National Aeronautics and Space Administration, Washington, DC, 2000.

[20] Peter G. Neumann. Cause of AT&T network failure. The Risks Digest, 9(62), 1990.

[21] National Institute of Standards and Technology (NIST), Department of Commerce. Software
errors cost U.S. economy $59.5 billion annually, 2002.

[22] RTCA. DO-178B: Software Considerations in Airborne Systems and Equipment Certification.
Technical report, Radio Technical Commission for Aeronautics (RTCA), 1982.

[23] Mary Shaw. Prospects for an engineering discipline of software. IEEE Software,
(November):15-24, 1990.

[24] The Standish Group International Inc. The Standish Group International Inc. Chaos Technical
report. Technical report, 2004.

[25] United States General Accounting Office. Patriot Missile Defense: Software Problem Led to
System Failure at Dhahran, Saudi Arabia. Technical report, United States General Accounting Of-
fice, 1992.

[26] Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The goal question metric approach. En-
cyclopedia of Software Engineering. Wiley.

[27] Basili, V., & Weiss, D. (1984). A methodology for collecting valid software engineering data.
IEEE Trans. Software Eng., 10(6), 728-738.

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

Résumé. L’extraction de connaissances à partir de données issues du génie logi-
ciel est un domaine qui s’est beaucoup développé ces dix dernières années, avec
notamment la fouille de référentiels logiciels (Mining Software Repositories) et
l’application de méthodes statistiques (partitionnement, détection d’outliers) à
des thématiques du processus de développement logiciel.
La fondation Eclipse, l’une des plus importantes forges du monde libre, a mis en
place récemment une infrastructure de centralisation de ces données et a initié le
groupe de travail Polarsys pour le suivi de qualité de projets impliqués dans le
développement de systèmes embarqués critiques.
Cet article présente la démarche de fouille de données mise en œuvre dans le
cadre de Polarsys, de la définition des exigences à la proposition d’un modèle
de qualité dédié et à son implémentation sur un prototype. Les principaux pro-
blèmes rencontrés et les leçons tirées sont également passés en revue.

1 Introduction
Les méthodes statistiques ont été introduites il y a plusieurs décennies déjà dans le domaine

du suivi et du contrôle de processus de production, avec par exemple les méthodes SPC (Sta-
tistical Process Control) ou Six Sigma. Bien que l’industrie logicielle en ait considérablement
bénéficié depuis, ce n’est que récemment que les problématiques particulières du génie logiciel,
c’est-à-dire l’art de construire de bons logiciels, ont été spécifiquement adressées. L’arrivée de
nouvelles méthodes issues de la fouille de données (e.g. partitionnement, détection d’outliers)
ouvre cependant de nouveaux horizons pour la compréhension et l’amélioration du logiciel et
des pratiques de développement.

De nouveaux types de données sont également utilisés : métadonnées des outils du pro-
cessus (gestion de configuration, gestion des changements), analyse des moyens de communi-
cation, statistiques de publications, etc. Il est nécessaire de définir et d’étudier ces nouveaux
types d’artéfacts pour pouvoir les collecter de manière fiable, puis les exploiter et leur définir

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

un lien pertinent avec les attributs de qualité. Les données issues du processus de développe-
ment logiciel ont par ailleurs des propriétés particulières : leur distribution n’est pas normale,
il y a de fortes corrélations entre certaines d’entre elles, et leur sémantique doit être pleinement
comprise pour les rendre pleinement utilisables. En ce sens de nombreuses questions sur le
processus de mesure de données logicielles, notamment relevées par Basili et Weiss (1984),
Fenton (1994) et Kaner et Bond (2004), restent d’actualité pour ce domaine émergeant. Les
approches proposées dans ces dix dernières années (Zhong et al., 2004; Herbold et al., 2010;
Yoon et al., 2007) n’ont pas su tenir compte de ces caractéristiques et manquent encore d’ap-
plications concrètes – ceci étant une caractéristique du manque de maturité de la discipline,
ainsi que le soulignait Shaw (1990).

Nous proposons dans cet article quelques pistes pour répondre à ces différentes probléma-
tiques, et démontrons son application dans le cadre de la fondation Eclipse. La section 2 pose
les bases de notre réflexion et présente une topologie nominale pour les projets de dévelop-
pement logiciel. La section 3 propose une approche adaptée à l’application de méthodes de
fouilles de données au processus de développement logiciel, et la section 4 décrit sa mise en
pratique dans le cadre du groupe de travail Eclipse Polarsys. Quelques exemples de résultats
sont montrés en section 5. Finalement, nous présentons en section 6 les prochaines évolutions
de la mesure de qualité pour Polarsys et récapitulons le travail et ses apports dans la section 7.

2 Prolégomènes : comprendre le problème

2.1 Nature des données
Lorsque l’on parle de fouille de données logicielles, la source la plus intuitive est sans

doute le code source, puisque c’est l’objectif principal de tout développement et une ressource
commune à tout projet logiciel. Cependant, en élargissant notre champ de vision il existe de
nombreuses autres mesures qui apportent des informations importantes pour le projet, notam-
ment relatives au processus de développement lui-même.

Chaque référentiel d’information utilisé par le projet possède des informations exploi-
tables. Il importe de lister les référentiels disponibles, puis d’identifier pour chacun d’eux les
artéfacts et mesures disponibles, et de leur donner un sens. Certains types d’artéfacts sont plus
pertinents que d’autres pour certains usage ; par exemple l’activité d’un projet est visible sur le
nombre de révisions et/ou la diversité des développeurs, alors que la réactivité du support est
davantage visible sur le système de gestion des tickets.

Notamment, le croisement des données entre artéfacts s’avère très utiles mais peut être
difficile à établir – par exemple les liens entre modifications de code et bugs (Bachmann et al.,
2010). Les conventions de nommage sont un moyen courant de tracer les informations entre
les référentiels, mais elles sont locales à chaque projet et ne sont pas nécessairement respectées
ou vérifiées.

2.2 Les sources de données logicielles
Bien que l’environnement utilisé varie en fonction de la maturité et du contexte du projet,

on peut définir pour base commune un ensemble d’outils et de référentiels communs à tout
projet de développement logiciel.

Le code source est le moyen le plus utilisé pour l’analyse de projets logiciels. Du point
de vue de l’analyse statique (Louridas, 2006; Spinellis, 2006), les informations que l’on peut
récupérer d’un code source sont :

– des métriques, correspondant à la mesure de caractéristiques définies du logiciel : e.g. sa
taille, la complexité de son flot de contrôle, ou le nombre maximal d’imbrications.

– des violations, correspondant au non-respect de conventions de codage ou de nommage.
Par exemple, ne pas dépasser une valeur de métrique, l’interdiction des goto inverses ou
l’obligation de clauses default dans un switch. Ces informations sont fournies par des
analyseurs tels que Checkstyle 1, PMD 2 ou SQuORE 3.

La gestion de configuration contient l’ensemble des modifications faites sur l’arbores-
cence du projet, associées à un ensemble de méta-informations relatives à la date, l’auteur
et la version (branche) du produit visée par la révision. Le positionnement dans l’arbre des
versions est capital, car les résultats ne seront pas les mêmes pour une version en cours de dé-
veloppement (active avec beaucoup de nouvelles fonctionnalités, typiquement développée sur
le tronc) que pour une version en maintenance (moins active, avec une majorité de corrections
de bugs, typiquement développée sur une branche). Dans nos analyses, c’est le tronc que nous
référençons afin d’analyser et améliorer la prochaine version du produit.

La gestion des tickets recense l’ensemble des demandes de changement faites sur le projet.
Ce peuvent être des problèmes (bugs), de nouvelles fonctionnalités ou de simples questions.
Certains projets utilisent également les demandes de changement pour tracer les exigences
liées à un produit.

Les listes de diffusion sont les principaux moyens de communcation utilisés au sein de
projets logiciels. Il existe en général au moins deux listes, une dédiée au développement et
l’autre aux questions utilisateur. Leurs archives sont en général disponibles, que ce soit au
format mbox ou par une interface web (e.g. mhonarc, mod_mbox, gmane ou markmail).

2.3 La mesure de caractéristiques logicielles

L’art de la mesure est bien plus mature que celui du développement logiciel. Par exemple
la notion que l’on a de la taille d’une personne est commune à tout le monde, et tout un chacun
sait ce que veut dire que d’être plus grand. Mais beaucoup d’évidences s’estompent cependant
lorsque l’on parle de logiciel, ainsi que l’ont fait remarquer Fenton (1994) et Kaner et Bond
(2004). A titre d’exemple, à fonctionnalité équivalente la taille d’un programme en Java n’est
pas comparable à celle d’un code C ou en Perl, à cause du niveau d’abstraction du langage, des
conventions de nommage et des structures de données disponibles.

Cela est d’autant plus vrai dans le cas de caractéristiques abstraites telles que les notions
de qualité, de fiabilité ou d’utilisabilité. De la conformité aux exigences à la satisfaction utili-
sateurs beaucoup de définitions, puis de modèles de qualité ont été proposés. Mais chacune de
ces notions est différente, en fonction de l’expérience et de l’expertise de chacun, du domaine
d’application et des contraintes de développement. Pour cette raison il importe en préambule
à toute activité de fouille de données logicielles de définir les attentes des utilisateurs et de
fournir à tous un socle commun pour la compréhension et l’interprétation des objectifs du pro-

1. http ://checkstyle.sourceforge.net
2. http ://pmd.sourceforge.net
3. http ://www.squoring.com

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

gramme de fouille – dans notre cas ce sont par exemple les développeurs et utilisateurs finaux
du produit logiciel.

Il est préférable pour la définition de la notion de qualité de s’appuyer sur des modèles
ou standards éprouvés et (re)connus, car les concepts et définitions ont déjà fait l’objet de dé-
bats et d’un consensus commun sur lesquels s’appuyer. En outre, la littérature et les retours
d’expérience accessibles facilitent la communication sur le programme et donnent de solides
fondations à l’approche choisie – par exemple pour étayer la sélection des métriques en regard
des attributs de qualité. Du point de vue de la qualité produit, la référence de facto semble
être l’ISO 9126 (ISO, 2005). La relève, en cours d’élaboration par l’organisme de standardi-
sation ISO, est la série 250xx SQuaRE (Organization, 2005). La maturité du processus de
développement est adressée par des initiatives largement reconnues telle que le CMMi ou
l’ISO 15504. Enfin, des modèles de qualité dédiés ont été proposés pour certains domaines tels
que ECSS pour l’espace, HIS pour l’automobile, ou SQO-OSS pour l’évaluation de logiciels
libres.

L’intégrité des métriques souffre de cette diversité et de ce manque de compréhension. Afin
de clarifier la démarche de mesure le suivi de programmes établis tels que l’approche Goal-
Question-Metric proposée par Basili et al. (1994) et reprise par Westfall et Road (2005) permet
une approche plus rigoureuse, qui préserve l’efficacité de l’analyse et le sens de ses résultats.

3 Présentation de la méthode d’extraction
La fouille de données logicielles est similaire en plusieurs points à la conduite de pro-

grammes de mesures. L’expérience glanée au fil des années sur ce dernier domaine (voir no-
tamment Iversen et Mathiassen (2000), Gopal et al. (2002) et Menzies et al. (2011)) a permis
l’établissement de bonnes pratiques qui aident à la définition, à l’implémentation et à l’utilisa-
tion des résultats d’analyse.

En nous inspirant de cette expérience, nous avons suivi le déroulement décrit ci-après pour
nous assurer de l’utilisabilité et de l’intégrité sémantique des résultats.

Déclaration d’intention La déclaration d’intention du travail de fouille et du modèle de qua-
lité est primordiale car elle donne un cadre méthodologique et sémantique pour la com-
préhension des utilisateurs et l’interprétation des résultats. Par exemple, les mesures
accessibles et les résultats attendus ne seront pas les mêmes pour un audit et pour un
programme d’amélioration continue de la qualité. L’intention doit être simple et tenir en
quelques phrases.

Décomposition des attributs de qualité L’intention du programme de fouille est ensuite for-
malisée et décomposée en attributs et sous-attributs de qualité. Cette étape forme le lien
entre une déclaration informelle d’intention et les mesures concrètes qui vont permettre
de la mesurer et de l’améliorer ; elle doit faire l’objet d’un consensus général et être
validée par les acteurs du programme. Le livrable attendu à l’issue de cette phase est
un modèle de qualité qui décrit et décompose les besoins identifiés, tels que montrés en
exemple en figure 1.

Définition des métriques accessibles L’identification et la collecte des données de mesure est
une étape fragile du processus, et une pierre d’achoppement classique (Menzies et al.,
2011). Nous devons d’abord établir la liste des référentiels exploitables (voir section 2.2),

FIG. 1 – Processus de définition du modèle de qualité et du choix des métriques.

puis identifier les mesures accessibles pour chacun d’entre eux, et les relier aux caracté-
ristiques de qualité. Il importe que la collecte soit fiable (i.e. l’information recherchée est
systématiquement présente et valide), automatisable afin de réduire le facteur d’erreur
humaine, et compréhensible pour garder la confiance des acteurs dans le processus.

Implémentation
Le processus de collecte et d’analyse doit être intégralement automatisé, de la col-
lecte des données à la publication des résultats, et exécuté de manière régulière – par
exemple au moyen d’un serveur d’intégration continue tel que Jenkins (Smart, 2011).
Son implémentation doit être transparente pour que les utilisateurs puissent se l’appro-
prier et éventuellement soumettre des problèmes ou améliorations 4.

Présentation
La manière dont l’information est présentée est capitale et peut mettre en péril l’en-
semble de la démarche. Dans certains cas une liste concise d’artéfacts est suffisante,
alors que dans d’autres cas un graphique bien choisi sera plus adapté et délivrera en
quelques secondes l’essentiel du message. Pour chacun des intérêts et objectifs identi-
fiés il importe de choisir un mode de visualisation qui permette sa compréhension et son
exploitation aisément. Par exemple si l’on veut présenter une liste d’artéfacts à retra-
vailler, celle-ci doit être suffisamment courte pour ne pas décourager les développeurs et
sa signification suffisamment claire pour savoir immédiatement ce qui doit être amélioré.

Reproductibilité de l’analyse Les données manipulées sont nombreuses (les métriques pou-
vant être récupérées sur l’ensemble du cycle de vie d’un projet logiciel se comptent par

4. Non sans une certaine touche d’ironie, les logiciels d’analyse de la qualité ou de détection de fautes ne sont
eux-mêmes pas exempts de problèmes. Lire à ce propos Hatton (2007).

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

dizaines une fois filtrées) et complexes (de par leur sémantique et leurs interactions).
Afin de garantir la cohérence des informations extraites il importe de préserver la re-
productibilité des analyses exécutées. L’utilisation de techniques d’analyse littéraire,
introduites par D. Knuth pour le développement logiciel et reprises par F. Leisch et Xie
(2013) 5 pour l’analyse de données, aide de beaucoup à la compréhension des résultats
d’analyse. L’information peut être fournie sous forme de tableaux ou de graphes générés
dynamiquement, mais également sous forme de texte explicatifs. L’analyse de données
littéraire garantit ainsi que l’ensemble des projets utilise le même processus d’analyse,
ce qui les rend comparables, et donne un contexte sémantique aux résultats.

4 Mise en pratique avec Eclipse

4.1 Présentation du contexte

La fondation Eclipse est l’une des forges majeures du monde libre et un exemple remarqué
de succès du modèle open source. Elle abrite aujourd’hui plusieurs centaines de projets, leur
fournissant une forge et un éventail de services liés au développement : gestion de la propriété
intellectuelle, conseil pour la gestion des projets, et développement de l’écosystème.

L’une des caractéristiques fortes de la fondation Eclipse est son accointance avec le monde
industriel. Des groupes de travail (IWG, Industry Working Group) sont constitués sur des sujets
précis, avec un calendrier et des livrables définis, pour proposer des solutions à des probléma-
tiques concrètes. Ainsi le groupe de travail Polarsys 6 a pour tâche de promouvoir l’utilisation
d’Eclipse dans le monde des systèmes embarqués avec un environnement de développement
dédié et un support à très long terme (jusqu’à 75 ans) sur les outils livrés.

Par ailleurs la fondation a lancé récemment plusieurs initiatives pour fédérer les outils du
processus de développement et rendre leurs données publiquement accessibles, notamment le
projet PMI 7 (Project Management Infrastructure) qui recense les informations liées au proces-
sus de développement, et Dash 8 propose des outils d’analyse des informations.

4.2 La qualité au sein d’Eclipse

4.2.1 Déclaration d’intention

Les objectifs de ce programme de fouille ont été identifiés comme suit :
– Evaluer la maturité du projet. Peut-on raisonnablement s’appuyer dessus lorsque l’on

construit une application ? Le projet suit-il les recommandations de la fondation ?
– Aider les équipes à construire un meilleur logiciel, en leur proposant une vision claire

sur leurs développements et des actions simples pour améliorer le produit ou le processus
de développement.

– Fonder une compréhension commune de la qualité au sein de la fondation, et poser
les bases d’une discussion saine sur l’évaluation et l’amélioration des projets Eclipse.

5. Nous avons utilisé Knitr pour nos analyses : http ://yihui.name/knitr/.
6. https ://polarsys.org/wiki//index.php/Main_Page.
7. http ://wiki.eclipse.org/Project_Management_Infrastructure.
8. http ://wiki.eclipse.org/Dash_Project.

4.2.2 Exigences de qualité pour Eclipse

Il n’existe pas de contrainte forte de qualité produit pour les projets Eclipse. Il est recom-
mandé aux projets de mettre en place des conventions de développement propres et de travailler
sur la qualité du projet, mais cela n’est ni obligatoire ni vérifié. Néanmoins en navigant dans
les ressources en ligne de la fondation plusieurs mots-clefs reviennent régulièrement, notam-
ment en ce qui concerne la lisibilité et la modifiabilité du code 9. Le processus de développe-
ment Eclipse prévoit plusieurs phases pour un projet : proposition, incubation, mature, archivé.
Chaque phase est associée à un certain nombre de contraintes : mise en place de revues et de
milestones, vérification des informations de propriété intellectuelle, etc. La plupart de ces
règles sont obligatoires. Enfin, Eclipse définit trois communautés fondamentales pour un pro-
jet, que celui-ci doit développer et maintenir : développeurs, utilisateurs, et adopteurs. Dans
la perspective de notre évaluation, nous n’en retriendrons que deux : développeurs et utilisa-
teurs. Ces communautés doivent être réactives (le projet ne peut être inactif très longtemps) et
diversifiées (le projet ne peut dépendre que d’un individu ou d’une société).

4.2.3 Exigences de qualité pour Polarsys

Polarsys délivre des assemblages constitués de composants Eclipse pour l’industrie de
l’embarqué. Cela implique des contraintes de qualité particulières, particulièrement en ce qui
concerne la capacité d’industrialisation de la solution et sa pérennité.

– Fiabilité : une faute dans un seul des composants peut mettre en péril l’intégralité de la
pile logicielle. Plus précisément, la notion de fiabilité exprimée par le groupe de travail
est à la croisée de la maturité et de la tolérance au faute selon le modèle ISO 9126.

– Maintenabilité : le support doit être assuré jusqu’à 75 ans pour certain systèmes (e.g.
espace et aéronautique). Outre la maintenabilité du produit lui-même, cela implique que
les communautés entourant le projet soient actives et diversifiées.

– Prédictibilité : la solution sera déployée sur des milliers de postes dans le monde et
aura des conséquences importantes sur la productivité des équipes. Il est vital de pouvoir
compter sur la date et la qualité des livraisons.

Globalement, les contraintes de qualité de Polarsys sont similaires à celles de la fondation
Eclipse, mais sont renforcées pour le contexte industriel spécifique de l’assemblage. La par-
ticipation financière des industriels impliqués dans le groupe permet d’assurer une force de
travail conséquente pour assumer ces exigences et d’imposer certaines contraintes aux projets
sélectionnés.

4.2.4 Proposition d’un modèle de qualité

A partir des exigences identifiées lors de l’analyse préalable, trois axes de qualité ont été
identifiés : la qualité du produit, du processus et de la communauté. Ceux-ci sont décomposés
en sous-caractéristiques selon la hiérarchie montrée en figure 2

Ces sous-caractéristiques, qui sont la granularité la plus fine d’attributs de qualité, sont en-
suite liés aux métriques selon une méthode décidée en concertation avec les acteurs, et publiée
pour les utilisateurs (développeurs et leaders).

9. Les problématiques de maintenabilité sont évidemment accentuées pour tous les projets libres, destinés à être
maintenus par tout un chacun.

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

FIG. 2 – Modèle de qualité proposé pour Polarsys.

4.3 Sélection des métriques

Nous avons dressé la liste des référentiels disponibles et des informations qu’ils renfer-
maient. Le principe de la forge 10 aide beaucoup en limitant le nombre de connecteurs dif-
férents, cependant chaque projet garde un certain nombre de coutumes locales. Pour chaque
référentiel nous avons ensuite défini des indicateurs pertinents pour les attributes de qualité
précédemment identifiés.

Les métadonnées de gestion de configuration sont extraites à partir des logs du serveur.
Deux connecteurs ont été développés, l’un pour Subversion et l’autre pour Git. Les métriques
définies aux niveaux application et fichier sont : le nombre de révisions, de révisions de cor-
rection et de développeurs. Au niveau application le nombre de fichiers associés aux révisions
est également utilisé. Toutes ces métriques sont récupérées sur quatre périodes de temps pour
mieux appréhender l’évolution récente des métriques : depuis l’origine, depuis une semaine,
un mois et trois mois.

Les moyens de communication fournis par Eclipse sont les forums en ligne (souvent uti-
lisés pour les listes utilisateur), les listes de diffusion et un serveur NNTP (souvent utilisés
pour les listes de développement). Plusieurs scripts ont été écrits pour transformer ces diffé-
rents accès en un format unique, le format mbox. A partir de ce socle commun les métriques
suivantes sont extraites au niveau application : le nombre de mails échangés, de fils de dis-
cussion, d’auteurs distincts, de réponses et le temps médian de première réponse. Les données
sont récupérées sur des laps de temps de une semaine, un mois et trois mois.

D’autres référentiels ont été investigués, mais seront inclus dans une prochaine itération du
modèle de qualité.

Les informations de processus sont issues de l’initiative Eclipse PMI, qui est en cours
d’implémentation. La liste des informations 11 référencées est donc mouvante, mais aujour-
d’hui les informations récupérées sont : le nombre de milestones et de revues définies pour le
projet, le nombre de fonctionnalités de haut niveau décidées pour le périmètre de la release, et
le nombre d’exigences bas-niveau associées.

10. Une forge offre un environnement complet et intégré de travail pour le développement d’un projet, et limite
donc le nombre d’outils disponibles.

11. Voir la liste des méta-données : http ://wiki.eclipse.org/Project_Management_Infrastructure/Project_Metadata.

Les logs de propriété intellectuelle sont enregistrés dans un référentiel dédié, et rendus
exploitable au travers d’une API publique. Les logs sont utilisés pour contrôler la couverture
des participations afin qu’aucune ne soit laissée sans déclaration de propriété intellectuelle.

4.4 Liens entre attributs de qualité et métriques
Les métriques qui permettent la mesure des attributs de qualité sont agréées par le groupe

de travail. Une proposition a été faite, ses principes exposés et un débat constructif a permis
de faire évoluer, puis de valider le modèle. Les sous-attributs de la qualité produit sont basés
sur un schéma identique : le nombre de non-conformités aux règles de codage impactant la
caractéristique, l’adhérence aux conventions (pratiques non acquises, quelque soit le nombre
de leurs violations), et un ou plusieurs index issus de bonnes pratiques reconnues – ce dernier
critère requérant particulièrement l’assentiment du groupe pour être valide 12. La composante
communautaire du projet est analysée selon les axes suivants : activité du projet (le nombre de
contributions récentes), sa diversité (le nombre d’acteurs distincts), la réactivité (le temps de
réponse aux requêtes) et le support (la capacité de réponse aux requêtes).

5 Résultats
Le prototype implémenté dans le cadre du groupe de travail Eclipse s’est appuyé sur l’ou-

til SQuORE Baldassari (2012) et a été appliqué à un sous-ensemble de projets pilotes. Les
résultats des analyses hebdomadaires ont été rendus disponibles en même temps que la publi-
cation de rapports Knitr générés automatiquement. Les résultats de cette première itération du
programme sont probants.

FIG. 3 – Exemples de résultats : arbre de qualité et violations.

Du point de vue de l’aide à la prise de décision premièrement, les axes de qualité choisis
permettent d’évaluer la maturité du projet d’un coup d’œil, selon les critères propres à l’or-
ganisation. Par exemple le projet analysé en figure 3 montre une bonne qualité produit, mais

12. D’après Fenton (1994) la théorie de la mesure considère comme valide une mesure qui obtient l’agrément
minimum de la majorité des experts dans la communauté.

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

une faible activité de communication et un petit nombre de participants, car l’essentiel des
contributions est fait par une unique société. Cette caractéristique peu visible a priori en fait
un risque pour la pérennité du projet, rapidement identifiable sur l’arbre de qualité.

Du côté des équipes de développement, l’aide à l’amélioration de la qualité se fait au
moyen de listes de violations et de points d’action, qui permettent d’identifier et d’améliorer les
pratiques non acquises et fournissent des recommandations pragmatiques pour l’amélioration
du code ou du processus. En outre, les non-conformités aux exigences édictées par la fondation
Eclipse ou par les projets eux-même sont rendues clairement visibles par des points d’action
listant les sujets considérés comme faibles (e.g. activité des listes de diffusion, retard sur les
milestones, etc.). La capture d’écran située à droite de la figure 3 liste ainsi certaines violations
de code détectées sur un projet, avec les fonctions incriminées et le delta par rapport à la
dernière analyse – il est toujours plus facile de reprendre un code qui vient d’être modifié.
Enfin, certaines préoccupations font l’objet d’un traitement spécifique, comme les fichiers très
complexes (flots de contrôle et de données, taille) ou instables (ayant eu un grand nombre
de révisions). Leur identification visuelle donne une autre vision de la structure du projet et
permet d’améliorer directement la qualité du produit.

6 Directions futures

La seconde itération du modèle de qualité Eclipse s’appuiera sur les travaux réalisés pour
raffiner les exigences de qualité, améliorer les liens avec les métriques et calibrer le modèle
pour définir les seuils acceptables de validité des projets. De nouvelles sources de données
seront intégrées au modèle de qualité : ainsi les tests (e.g. : nombre, ratio, couverture), les
informations d’intégration continue (nombre et ratio de builds échoués, temps moyen de com-
pilation et de test), et les statistiques issues des moyens de communication (wiki, site web,
downloads). De nouveaux types d’artéfacts et mesures sont également prévus à partir des ré-
férentiels existants : exigences tirées de la gestion des changements, nouvelles informations
tirées du référentiel de processus.

Ce travail a été présenté à la communauté Eclipse lors de la conférence EclipseCon France
2013 sise à Toulouse en Juin 2013, et son industrialisation est en cours pour une publication
prévue en 2014. Il est également envisagé d’étendre la démarche de qualité initiée pour Po-
larsys aux projets Eclipse pour compléter les initiatives actuelles PMI et Dash. La démarche
sera rejouée pour définir un nouveau modèle de qualité adapté, avec des exigences de qualité
différentes et des contraintes plus légères.

7 Conclusion

Le prototype développé dans le cadre du groupe de travail Polarsys a permis de :
– Définir un socle méthodologique commun pour discuter de la notion de qualité. Le

modèle de qualité évoluera pour inclure de nouvelles fonctionnalités ou contraintes de
qualité, mais sa structure a fait l’objet d’un assentiment général dans le groupe de travail
et la communauté attachée.

– Définir un ensemble de métriques nouvelles ou peu courantes pour évaluer la notion de
qualité. Les informations issues des référentiels de développement apportent notamment
une vision plus complète du projet.

– Montrer la faisabilité d’une telle solution. Le prototype a apporté la preuve que les
informations pouvaient être utilisées de manière pragmatique et efficace pour l’amélio-
ration des projets logiciels, que ce soit au niveau du code ou des pratiques de dévelop-
pement.

Mais les leçons tirées de cette expérience de fouille de données dans un contexte indus-
triel et communautaire ne sont pas limitées à l’écosystème Eclipse et peuvent être appliquées
à d’autres projets et d’autres forges, tant pour le monde libre que pour les projets de dévelop-
pement internes. L’utilisation de forges complètes et intégrées est d’une grande aide pour la
collecte des informations sur le cycle de vie des projets et un facteur important de succès pour
la démarche d’évaluation et d’amélioration de la qualité. En ce sens des projets d’interopéra-
bilité tels que OSLC devraient permettre à l’avenir de faciliter cette intégration.

Les concepts clefs évoqués forment un cadre méthodologique qui peut être adapté aisément
à d’autres environnements. Ainsi la participation des acteurs est fondamentale pour obtenir
une synergie constructive et une reconnaissance globale de la démarche. La déclaration d’in-
tention du programme de mesure et sa décomposition en un modèle de qualité permettent
d’éviter les mauvaises utilisations et dérives et assurent la qualité et l’utilisabilité des infor-
mations retirées. La méthode de calcul des mesures doit être clairement expliquée afin de
permettre aux utilisateurs finaux d’en retirer le plus grand bénéfice et de participer à l’évolu-
tion du programme. Enfin, la présentation des données permet de transformer l’information
en connaissance utile pour l’amélioration du produit ou du processus de développement.

Références

Bachmann, A., C. Bird, F. Rahman, P. Devanbu, et A. Bernstein (2010). The Missing Links :
Bugs and Bug-fix Commits.

Baldassari, B. (2012). SQuORE : A new approach to software project quality measurement.
In International Conference on Software & Systems Engineering and their Applications.

Basili, V. et D. Weiss (1984). A methodology for collecting valid software engineering data.
IEEE Trans. Software Eng. 10(6), 728–738.

Basili, V. R., G. Caldiera, et H. D. Rombach (1994). The Goal Question Metric approach.
Fenton, N. (1994). Software Measurement : a Necessary Scientific Basis. IEEE Transactions

on Software Engineering 20(3), 199–206.
Gopal, A., M. Krishnan, T. Mukhopadhyay, et D. Goldenson (2002). Measurement programs

in software development : determinants of success. IEEE Transactions on Software Engi-
neering 28(9), 863–875.

Hatton, L. (2007). The chimera of software quality. Computer 40(8), 103—-104.
Herbold, S., J. Grabowski, H. Neukirchen, et S. Waack (2010). Retrospective Analysis of

Software Projects using k-Means Clustering. In Proceedings of the 2nd Design for Future
2010 Workshop (DFF 2010), May 3rd 2010, Bad Honnef, Germany.

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

ISO (2005). ISO/IEC 9126 Software Engineering - Product Quality - Parts 1-4. Technical
report, ISO/IEC.

Iversen, J. et L. Mathiassen (2000). Lessons from implementing a software metrics program.
In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences,
pp. 1—-11. IEEE.

Kaner, C. et W. P. Bond (2004). Software engineering metrics : What do they measure and
how do we know ? In 10th International Software Metrics Symposium, METRICS 2004, pp.
1–12.

Louridas, P. (2006). Static Code Analysis. IEEE Software 23(4), 58—-61.
Menzies, T., C. Bird, et T. Zimmermann (2011). The inductive software engineering mani-

festo : Principles for industrial data mining. In Proceedings of the International Workshop
on Machine Learning Technologies in Software Engineering, Lawrence, Kansas, USA.

Organization, I. S. (2005). ISO/IEC 25000 :2005 Software engineering - Software product
Quality Requirements and Evaluation (SQuaRE) - Guide to SQuaRE. Technical report,
ISO/IEC, Geneva.

Shaw, M. (1990). Prospects for an Engineering Discipline of Software. IEEE Software (No-
vember), 15–24.

Smart, J. (2011). Jenkins : The Definitive Guide. O’Reilly Media, Inc.
Spinellis, D. (2006). Bug Busters. IEEE Software 23(2), 92—-93.
Westfall, L. et C. Road (2005). 12 Steps to Useful Software Metrics. Proceedings of the

Seventeenth Annual Pacific Northwest Software Quality Conference 57 Suppl 1(May 2006),
S40–3.

Xie, Y. (2013). Knitr : A general-purpose package for dynamic report generation in R. Tech-
nical report.

Yoon, K.-A., O.-S. Kwon, et D.-H. Bae (2007). An Approach to Outlier Detection of Software
Measurement Data using the K-means Clustering Method. In Empirical Software Enginee-
ring and Measurement, pp. 443–445.
English

Zhong, S., T. Khoshgoftaar, et N. Seliya (2004). Analyzing software measurement data with
clustering techniques. IEEE Intelligent Systems 19(2), 20–27.

Summary
Knowledge discovery and extraction from software-related repositories had great advances

in recent years with the introduction of statistical methods to software engineering concerns
and the development of software repositories data mining. In this article, we present a data
mining program initiated within the Eclipse foundation to assess and improve software project
maturity. We thoroughly describe the approach and the key concepts retained, list the en-
countered issues and propose solutions for them. Results are discussed and future directions
proposed to foster further work in the domain.

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

Boris Baldassari∗, Flavien Huynh∗, Philippe Preux∗∗

∗ 76 Allées Jean Jaurès, Toulouse, France.
boris.baldassari@squoring.com – http://www.squoring.com

∗∗ Université de Lille 3, LIFL (UMR CNRS) & INRIA, Villeneuve d’Ascq, France
philippe.preux@inria.fr – https://sequel.inria.fr

Résumé. L’extraction de connaissances à partir de données issues du génie logi-
ciel est un domaine qui s’est beaucoup développé ces dix dernières années, avec
notamment la fouille de référentiels logiciels (Mining Software Repositories) et
l’application de méthodes statistiques (partitionnement, détection d’outliers) à
des thématiques du processus de développement logiciel. Cet article présente la
démarche de fouille de données mise en œuvre dans le cadre de Polarsys, un
groupe de travail de la fondation Eclipse, de la définition des exigences à la pro-
position d’un modèle de qualité dédié et à son implémentation sur un prototype.
Les principaux concepts adoptés et les leçons tirées sont également passés en
revue.

1 Introduction
L’évolution et le croisement des disciplines de la fouille de données et du génie logiciel

ouvrent de nouveaux horizons pour la compréhension et l’amélioration du logiciel et des pra-
tiques de développement. A l’aube de ce domaine émergent de nombreuses questions restent
cependant d’actualité du point de vue de la conduite de programmes de mesure logicielle, no-
tamment relevées par Fenton (1994) et Kaner et Bond (2004). Nous proposons dans cet article
quelques pistes pour répondre à ces problématiques et mettre en place un processus de mesure
fiable et efficace.

Il est utile pour la définition de la notion de qualité de s’appuyer sur des modèles ou stan-
dards reconnus : du point de vue de la qualité produit, la référence de facto semble être l’ISO
9126 et son futur successeur, la série 250xx SQuaRE. La maturité du processus de développe-
ment est adressée par des initiatives largement reconnues telle que le CMMi ou l’ISO 15504.
Afin de clarifier la démarche de mesure, l’approche Goal-Question-Metric proposée par Basili
et al. et reprise par Westfal Westfall et Road (2005) permet une approche plus rigoureuse, qui
préserve l’efficacité de l’analyse et le sens de ses résultats.

2 Topologie d’un projet de développement logiciel
Chaque référentiel d’information utilisé par le projet possède des informations exploi-

tables. Il importe de lister les référentiels disponibles, puis d’identifier pour chacun d’eux les
artéfacts et mesures disponibles, et de leur donner un contexte sémantique.

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

Le code source est le type d’artéfact le plus utilisé pour l’analyse de projets logiciels. Du
point de vue de l’analyse statique (Louridas, 2006), les informations que l’on peut récupérer
d’un code source sont les métriques, correspondant à la mesure de caractéristiques définies du
logiciel (e.g. sa taille ou la complexité de son flot de contrôle), et les violations, correspondant
au non-respect de bonnes pratiques ou de conventions de codage ou de nommage (e.g. l’obli-
gation de clause default dans un switch). Ces informations sont fournies par des analyseurs tels
que Checkstyle, PMD ou SQuORE (Baldassari, 2012).

La gestion de configuration contient l’ensemble des modifications faites sur l’arbores-
cence du projet, avec des méta-informations sur l’auteur, la date ou l’intention des change-
ments. Le positionnement dans l’arbre des versions est important, car les résultats ne seront
pas les mêmes pour une version en cours de développement (développée sur le tronc) et pour
une version en maintenance (développée sur une branche).

La gestion des tickets recense l’ensemble des demandes de changement faites sur le projet.
Ce peuvent être des problèmes (bugs), de nouvelles fonctionnalités, ou de simples questions.

Les listes de diffusion sont les principaux moyens de communication utilisés au sein de
projets logiciels. Il existe en général au moins deux listes, une dédiée au développement et
l’autre aux questions utilisateur.

FIG. 1 – Processus de définition du modèle de qualité et du choix des métriques.

3 Présentation de la méthode d’extraction

La fouille de données logicielles est similaire en plusieurs points à la conduite de pro-
grammes de mesures. L’expérience glanée au fil des années sur ce dernier domaine (voir no-
tamment Gopal et al. (2002) et Menzies et al. (2011)) a permis d’établir de bonnes pratiques
qui aident à la définition, à l’implémentation et à l’utilisation des résultats d’analyse.

B. Baldassari, F. Huynh, P. Preux

La déclaration d’intention donne un cadre méthodologique et sémantique pour la com-
préhension et l’interprétation des résultats. Par exemple, les mesures accessibles et les résultats
attendus ne seront pas les mêmes pour un audit et pour un programme d’amélioration continue
de la qualité. L’intention doit être simple et tenir en quelques phrases.

La décomposition des attributs de qualité décompose les objectifs de la fouille et forme
le lien entre une déclaration informelle d’intention et les mesures concrètes qui vont permettre
de mesurer et d’améliorer la qualité ainsi définie ; elle doit faire l’objet d’un consensus général
et être validée par les acteurs du programme.

La définition des métriques accessibles à partir des référentiels identifiés sur le projet
doit être fiable – i.e. l’information recherchée est systématiquement présente et valide – et
compréhensible pour garder la confiance des acteurs dans le processus.

L’implémentation du processus de collecte et d’analyse doit être transparente pour que les
acteurs puissent se l’approprier, intégralement automatisée, et exécutée de manière régulière.

La présentation des informations est capitale. Dans certains cas une liste concise d’arté-
facts est suffisante, alors que dans d’autres cas un graphique bien choisi sera plus adapté et
délivrera en quelques secondes l’essentiel du message.

4 Mise en pratique avec Eclipse
Cette approche a été mise en œuvre dans le cadre de Polarsys, un groupe de travail de la

fondation Eclipse qui a pour but, entre autres, de proposer un cadre d’évaluation de la qua-
lité des projets de la fondation. L’arbre de qualité montré en figure 2 montre les exigences
identifiées pour Eclipse et Polarsys, et leur organisation en attributs de qualité.

FIG. 2 – Modèle de qualité proposé pour Polarsys.

Du point de vue de l’aide à la prise de décision, les axes de qualité choisis permettent
d’évaluer la maturité du projet immédiatement, selon les critères propres à l’organisation. Par
exemple le projet analysé sur la droite de la figure 2 montre une bonne qualité produit, mais
une faible activité de communication et un petit nombre de participants, car l’essentiel des
contributions est fait par une unique société. Cette caractéristique peu visible a priori en fait
un risque pour la pérennité du projet, rapidement identifiable sur l’arbre de qualité. Du côté

De l’ombre à la lumière : plus de visibilité sur l’Eclipse

des équipes de développement, l’aide à l’amélioration de la qualité se fait au moyen de listes
de violations et de points d’action, qui permettent d’identifier et d’améliorer les pratiques non
acquises et fournissent des recommandations pragmatiques pour l’amélioration du code et du
processus.

5 Conclusion
Le prototype développé dans le cadre du groupe de travail Polarsys a permis de définir un

socle méthodologique commun et un ensemble de métriques issues de sources nouvelles
pour travailler ensemble sur la notion de qualité, et a plus généralement permis de démontrer
la faisabilité d’une telle solution. Le prototype a apporté la preuve que des connaissances pra-
tiques pouvaient être extraites du projet pour l’évaluation et l’amélioration de la maturité. Ce
travail a été présenté à la communauté Eclipse lors de la conférence EclipseCon France 2013
sise à Toulouse en Juin 2013, et son industrialisation est en cours pour une publication prévue
en 2014. Il est également envisagé d’étendre la démarche de qualité initiée pour Polarsys aux
projets Eclipse pour compléter les initiatives actuelles PMI et Dash.

Références
Baldassari, B. (2012). SQuORE : A new approach to software project quality measurement.

In International Conference on Software & Systems Engineering and their Applications.
Fenton, N. (1994). Software Measurement : a Necessary Scientific Basis. IEEE Transactions

on Software Engineering 20(3), 199–206.
Gopal, A., M. Krishnan, T. Mukhopadhyay, et D. Goldenson (2002). Measurement programs

in software development : determinants of success. IEEE Transactions on Software Engi-
neering 28(9), 863–875.

Kaner, C. et W. P. Bond (2004). Software engineering metrics : What do they measure and
how do we know ? In 10th Internationalwestfal Software Metrics Symposium, pp. 1–12.

Louridas, P. (2006). Static Code Analysis. IEEE Software 23(4), 58–61.
Menzies, T., C. Bird, et T. Zimmermann (2011). The inductive software engineering mani-

festo : Principles for industrial data mining. In Proceedings of the International Workshop
on Machine Learning Technologies in Software Engineering, Lawrence, Kansas, USA.

Westfall, L. et C. Road (2005). 12 Steps to Useful Software Metrics. Proceedings of the 17th
Annual Pacific Northwest Software Quality Conference 57 Suppl 1(May 2006), S40–3.

Summary
Knowledge discovery and extraction from software-related repositories had great advances

in recent years. In this article, we present a data mining program initiated within the Eclipse
foundation to assess and improve software project maturity. We thoroughly describe the ap-
proach and the key concepts retained. Results are discussed and future directions proposed to
foster further work in the domain.

C
on

na
is

sa
nc

e

Te
ch

ni
qu

e
Fo

nc
ti

on
ne

l

O
bs

cu
ri

té

D
e

l'o
m

br
e

à
la

 lu
m

iè
re

 :
pl

us
 d

e
vi

si
bi

lit
é

su
r

Ec
lip

se

D
év

el
op

pe
ur

s

U
til

isa
te

ur
s

In
du

st
rie

ls

Je
 v

eu
x

un
 b

on
 lo

gi
ci

el
.

M
ai

nt
en

ab
le

Pr
év

isi
bl

e

Pé
re

nn
e

Fi
ab

le

Je
 v

eu
x

un
 lo

gi
ci

el
.

Ré
fé

re
nt

ie
ls

Ac
ce

ss
ib

ili
té

&

 F
ia

bi
lit

é
de

l'i

nf
or

m
at

io
n

12
 S

te
ps

 t
o

U
se

fu
l
So

ft
w

ar
e

M
et

ri
cs

.
W

es
tf

al
l,

L.
 e

t
C

. R
oa

d
(2

00
6)

.

T
he

 G
oa

l
Q

ue
st

io
n

M
et

ri
c

ap
pr

oa
ch

.
B

as
ili

, V
. R

.,
G

. C
al

di
er

a,
 e

t
H

. D
. R

om
ba

ch
 (

19
94

).

T
he

 i
nd

uc
ti
ve

 s
of

tw
ar

e
en

gi
ne

er
in

g
m

an
ife

st
o:

P

ri
nc

ip
le

s
fo

r
in

du
st

ri
al

 d
at

a
m

in
in

g.
M

en
zi

es
, T

.,
C

. B
ird

, e
t

T
. Z

im
m

er
m

an
n

(2
01

1)
.

✔
Es

tim
at

io
n

ob
je

ct
iv

e
de

 la
 m

at
ur

ité
✔

Pr
at

iq
ue

s
ac

qu
is

es
✔

Po
in

ts
 d

'a
ct

io
n

✔
Ai

de
 à

 la
 c

on
du

ite
 d

e
pr

oj
et

M
ét

riq
ue

s

So
ft

w
ar

e
qu

al
it

y:
 t

he

el
us

iv
e

ta
rg

et

B
. K

itc
he

nh
am

 a
nd

 S
.

Pf
le

eg
er

 (
19

96
).

So
ft

w
ar

e
qu

al
it
y

m
od

el
s:

 P
ur

po
se

s,

us
ag

e
sc

en
ar

io
s

an
d

re
qu

ir
em

en
ts

F.
 D

ei
ss

en
bo

ec
k,

 E
. J

ue
rg

en
s,

K
.

Lo
ch

m
an

n,
 a

nd
 S

. W
ag

ne
r

(2
00

9)
.

E
va

lu
at

in
g

th
e

qu
al

it
y

of
 o

pe
n

so
ur

ce
 s

of
tw

ar
e

D
. S

pi
ne

lli
s

an
d

G
. G

ou
sio

s
(2

00
9)

.

Im
pl

ém
en

ta
tio

n

Pu
bl

ic
at

io
n

Sé
m

an
tiq

ue
,

M
ét

ho
de

 d
e

ca
lc

ul

Bo
ri

s
Ba

ld
as

sa
ri

, S
Q

uO
RI

N
G

 T
ec

hn
ol

og
ie

s
–

Fl
av

ie
n

H
uy

nh
, S

Q
uO

RI
N

G
 T

ec
hn

ol
og

ie
s

–
Ph

ili
pp

e
Pr

eu
x,

 IN
RI

A
Li

lle

234

Outliers Detection in Software Engineering data

Boris Baldassari
SQuORING Technologies

74 Allées Jean Jaurès
31000 Toulosue, France

boris.baldassari@squoring.com

Philippe Preux
SequeL INRIA Lille

Campus
59000 Lille, France

philippe.preux@inria.fr

ABSTRACT
Outliers detection has been intensively studied and applied
in recent years, both from the theoretical point of view
and its applications in various areas. These advances have
brought many useful insights on domain-specific issues giv-
ing birth to visible improvements in industry systems.
However this is not yet the case for software engineer-

ing: the few studies that target the domain are not well
known and lack pragmatic, usable implementation. We be-
lieve this is due to two main errors. Firstly the semantics of
the outliers search has not been clearly defined, thus threat-
ening the understandability, usability and overall relevance
of results. Outliers must be linked to software practition-
ers’ needs to be useful and to software engineering concepts
and practices to be understood. Secondly the nature of soft-
ware engineering data implies specific considerations when
working with it.
This article will focus on these two issues to improve and

foster the application of efficient and usable outliers detec-
tion techniques in software engineering. To achieve this we
propose some guidelines to assist in the definition and im-
plementation of software outliers detection programs, and
describe the application of three outliers detection methods
to real-world software projects, drawing usable conclusions
for their utilisation in industrial contexts.

Keywords
Outliers Detection, Data Mining, Software Metrics

1. INTRODUCTION
Generally speaking outliers in a data set are often detected

as noise in the data cleaning and preprocessing phase of a
mining process [18]. But outliers also have a wealth of useful
information to tell and in some cases they are the primary
goal of an analysis [9]: their application in specific, domain-
aware contexts has led to important advances and numerous
reliable integration in industrial products [25, 40].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
International Conference on Software Engineering 2014, Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

As observed by Shaw [44] some years ago, the discipline of
software engineering is not yet mature – one of the reasons
being that mathematical and scientific concepts are still dif-
ficult to apply to the domain, and many concepts are not
generally agreed upon by specialists. In this context the
application of data mining techniques should bring many
new insights into the field. Among them, the meaning and
usefulness of outliers has not been extensively studied, al-
thought there exists a considerable need from actors of the
development process.
Considering the huge variety in nature of data, there is no

single generic approach to outliers detection [31]. One has
to carefully select and tailor the different techniques at hand
to ensure the relevance of the results. Furthermore software
measurement data has specific semantics and characteristics
that make some algorithms inefficient or useless, and the
results often lack practical considerations – i.e. what we are
really looking for when mining for outliers. We believe this
has a strong impact on the afterwards practical usability of
these techniques.
In this paper we intend to define a lightweight semantic

framework for them, establish use cases for their utilisation
and draw practical requirements for their exploitation. We
then demonstrate this approach by applying outliers detec-
tion to two common software engineering concerns: obfus-
cated files and untestable functions. Results are compared
to experience-based detection techniques and submitted to
a team of software engineering experts for cross-validation.
It appears that provided a semantic context software devel-
opers and practitionners agree on the resulting set and find
it both useful and usable.
This paper is organised as follows: in section 2 we give

the usual definitions and usages of outliers in statistics and
in the specific context of software engineering, and review
recent related work. Section 3 defines a semantic framework
for our research, stating what we are looking for and what
it really means for us. In section 4 we describe some outliers
detection techniques we intend to use: tail-cutting, boxplots
and clustering-based, and we apply them to real-world soft-
ware development concerns in section 5 with comments from
field experts. We finally draw our conclusions and propose
directions for future work in section 6.

2. STATE OF THE ART

2.1 What is an outlier?
One of the oldest definition of outliers still used today

comes from Hawkins [9]: an outlier is an observation that

deviates so much from other observations as to arouse sus-
picion that it was generated by a different mechanism. An-
other often encountered definition for outliers in scientific
literature comes from Barnett and Lewis [9], who define an
outlier as an observation (or subsets of observations) which
appears to be inconsistent with the remainder of that set of
data. Both are useful to get the idea of outliers, the former
addressing rather the causes and the later the consequences.
However in domain-specific contexts (e.g. healthcare, fraud

detection, or software engineering) there is a lot more to
say about what outliers are and what they mean. As ap-
plied to software engineering, Yoon et al. [51] define outliers
as the software data which is inconsistent with the major-
ity data. For Wohlin et al. [49] an outlier denotes a value
that is atypical and unexpected in the data set. Both are
close to Barnett’s definition. Lincke et al. [30] take a more
statistical perspective and define outliers as artefacts with
a metric value that is within the highest/lowest 15% of the
value range defined by all classes in the system.

2.2 Usages of outliers detection
From the data mining perspective, one of the main uses

of outliers detection techniques is to clean data before pro-
cessing [18, 33]: simple statistical estimates like variance or
mean, correlation coefficients in regression models or predic-
tion models may be biased by individual outliers [27].
Outliers may arise because of human error, instrument

error, natural deviations, fraudulent behaviour, changes in
behaviour, or faults in the system. In some cases they should
be identified to be discarded, in other cases they really rep-
resent a specific and valuable information that will help im-
prove the process, the product, or people’s behaviour [27].
Many studies apply outliers detection to security-related

data for e.g. insurance, credit card or telecommunication
fraud detection [25, 40], insider trading detection [46] and
network intrusion detection systems [29] by detecting de-
viating behaviours and unusual patterns. Outliers detec-
tion methods have also been applied to healthcare data [28,
50] to detect anomalous events in patient’s health, military
surveillance for enemy activities, image processing [46], or
industrial damages detection [11].
Studies that specifically target the application of min-

ing techniques to the software engineering domain are rare.
Mark C. Paulk [39] applies outliers detection and Process
Control charts in the context of the Personal Software Pro-
cess (PSP) to highlight individuals performance. Yoon et
al. [51] propose an approach based on k-means clustering
to detect outliers in software measurement data, only to re-
move them as they threaten the conclusions drawn from the
measurement program. In the later case the detection pro-
cess involves the intervention of software experts and thus
misses full automation. Other mining techniques have been
applied with some success to software engineering concerns,
such as recommendation systems to aid in software’s main-
tenance and evolution [8, 42] or testing [26].

2.3 Outliers detection methods
The most trivial approaches to detect outliers are man-

ual inspection of scatterplots or boxplots [28]. However
when analysing high-volume or high-dimensional data auto-
matic methods are more effective. Most common methods
are listed below; they can be classified according to differ-
ent criteria: univariate or multivariate, parametric or non-

parametric [18, 11].
Distribution-based approaches are parametric in nature:

they assume the existence of an underlying distribution of
values and flag all points that deviate from the model [9].
They are not recommended in software engineering, mainly
because of the distribution assumption [23, 37, 17] and their
complexity in high dimensions [9].
Distance-based approaches [24, 45] generalise many con-

cepts from distribution-based approaches and rely on a dis-
tance between points to identify outliers: points that have
few neighbours in a given distance are considered as out-
liers [9]. They suffer exponential computational growth as
they are founded on the calculation of the distances between
all records [18].
Density-based methods [7, 34] assign an “outlierness” co-

efficient to each object, which depends on the region density
around the object. They can be applied on univariate or
multivariate series, and are generally more capable of han-
dling large data sets [11].
Clustering-based approaches [51, 2, 45] apply unsuper-

vised classification to the data set and identify points that
either are not included in any cluster or constitute very small
clusters [45]. They can be used on univariate or multivariate
series and scale well to high dimensions, but may be compu-
tationally expensive depending on the clustering approach
selected [11].
Recent studies also propose outliers detection methods

borrowed from artificial intelligence, like fuzzy-based detec-
tion [9], neural networks [46] or support vector machines [9].
Another close research area is the detection of outliers in

large multi-dimensional data sets. There is a huge variety of
metrics that can be gathered from a software project, from
code to execution traces or software project’s repositories,
and important software systems commonly have thousands
of files, mails exchanged in mailing lists or commits. This
has two consequences: first in high dimensional space the
data is sparse and the notion of proximity fails to retain its
meaningfulness [1]. Second some algorithms are unefficient
or even not applicable in high dimensions [1, 15].

3. OUTLIERS IN SOFTWARE ENGINEER-
ING

3.1 About software engineering data
The nature of software measurement data has a great im-

pact on the methods that can be used on it and on the se-
mantic of results. Firstly every method making an assump-
tion about the underlying repartition of values is biased,
as we will see in the next section. Secondly the definition
of measures is still a subject of controversy and may vary
widely across programming languages, tools, or authors, as
identified by Kaner and Bond [20]. Since there is no estab-
lished standard, one has to clearly state the definition she
will be using and seriously consider the consistency of the
measures: once a measurement system is decided, all other
measurements should happen in the exact same way – repro-
ducible research tools like literate data analysis are precious
helpers for this purpose.
Another point is that many software metrics have high

correlation rates between them. As an example line-counting
metrics (e.g. overall/source/effective lines of code, number
of statements) are heavily correlated together – and they

often represent the majority of available metrics. Complex-
ity metrics (cyclomatic number, number control flow tokens,
number of paths) are highly correlated as well. When using
multivariate methods these relationships must be considered
since they may put a heavy bias on results.
From the history mining perspective, practitionners will

encounter missing data, migrations between tools and evolv-
ing local customs. As an example while most projects send
commit or bug notifications to a dedicated mailing list or
RSS feed, projects with a low activity may simply send them
to the developer mailing list. In this case one needs to filter
the messages to get the actual and accurate information. In
the generic case every step of the mining analysis must be
checked against the specific local requirements of projects.

3.2 Impact of distribution
No assumption can be made on the distribution of software-

related observations. Although some models have been pro-
posed in specific areas like the Pareto [14] and Weibull [52]
distributions for faults repartition in modules, or power laws
in dependency graphs [32], to our knowledge there is very
little scientific material about the general shape of com-
mon software metrics. And at first sight empirical software
data does not go normal or Gaussian, as shown in figure
1 for some metrics of Ant 1.7 source files: source lines of
code (SLOC), cyclomatic complexity (VG), comment rate
(COMR) and number of commits (SCM_COMMITS).

Figure 1: Distribution of some common file metrics
for Ant 1.7.

From an univariate perspective the number of extreme
outliers is proportional to the surface of the tail of the den-
sity function. In the case of heavy tailed distributions more
outliers will be found than for lightly tailed distributions.
In the case of long tails as seen in many metrics distribu-
tion functions, the threshold of 15% of the maximum value
defined by Lincke et al. in [30] gives a small number of
artefacts considered as outliers.

3.3 Defining outliers for software
One of the early steps in a data mining process is to define

exactly the objectives of the search. We believe this is even
more true in the context of industry developments to make
it both usable and used. End-users and practitionners must
understand what outliers are to make good use of them.
Software engineers and developers have an intuitive idea

of some outlier types. When looking at a piece of code ex-
perienced developers will instinctively tag it and identify
special characteristics. As an example they can identify
“classes” of files that they may consider as difficult to under-
stand or modify, or “strange patterns” like obfuscated code
or declaration-only files. We need to map the outliers we are
looking for to those specific classes of files known to users.
The volume of outliers output by the method is an impor-

tant parameter. We may want a fairly small amount of them
for incremental improvement of practices and quality, but in
some cases (e.g. an audit) an extended list is preferable to
help estimate the amount of technical debt of the software.
To achieve this some mandatory information should be

stated and published to ensure it will be understood and
safely used according to its original aim. We propose the
following template to be answered everytime outliers detec-
tion (or more generally data mining) technique is applied.
Define what outliers are for the user. They usually cor-

respond to a specific need, like unstable files in the context of
a release or overly complex functions for testing. Maybe de-
velopers, managers or end-users already have a word coined
for this concern.
How is this information used? Metrics programs may

have counter-productive effects if they are not well under-
stood [20]1. To avoid this the selected method and intent
should be explicitely linked to requirements and concepts
common to the end users so they can attach their own se-
mantic to the results and make better use of them.
How should results be presented? Visualisation is

the key to understanding, and a good picture is often worth
a thousand words. Select a presentation that shows why
the artefact is considered as an outlier. Sometimes a list
of artefacts may be enough, or a plot clearly showing the
extreme value of the outlier compared to other artefacts may
be more eye- and mind- catching.
In the context of software quality improvement, having

too many items to watch or identified as outliers would be
useless for the end user; selecting a lower value gives more
practical and understandable results. In that case clusters
that have less than 15% of the maximum value as proposed
by Lincke et al [30], outputs a fair and usable number of
artefacts due to the light tail of the frequency distribution –
one that can be considered by the human mind to be easily
improved. In other cases (e.g. audits) an extended list of
artefacts may be preferred.

3.4 Examples of outliers types
More specifically, outliers in software measurement data

can be used to identify:

Noise.
Artefacts that should be removed from the working set

1As an example productivity metrics solely based on lines
of code tend to produce very long files without any produc-
tivity increase.

because they threaten the analysis and the decisions taken
from there. As an example, if some files are automatically
generated then including them in the analysis is pointless,
because they are not to be maintained and it would be wiser
to analyse the model or generation process.

Unstable files.
Files that have been heavily modified, either for bug fix

or enhancements.

Complexity watch list.
Artefacts that need to be watched, because they have

complexity and maintainability issues. When modifying such
artefacts developers should show special care because they
are more likely to introduce new bugs [6]. This is rather
linked to extreme values of artefacts.

Anomalous.
Artefacts that show a deviance from canonical behaviour

or characteristics. A file may have a high but not unusual
complexity, along with a very low SLOC – as it is the case
for obfuscated code. This is often linked to dissimilarities in
the metrics matrix.

Obfuscated code.
Artefacts that contain code that is obfuscated pose a real

threat to understandability and maintainability. They should
be identified and rewritten.

4. OUTLIERS DETECTION METHODS

4.1 Simple tail-cutting
As presented in section 3.2 many metric distributions have

long tails. If we use the definition for outliers of Lincke et
al. [30] and select artefacts with metrics that have values
greater than 85% of their maximum, we usually get a fairly
small number of artefacts with especially high values.
Table 1 shows the maximum value of a few metrics and

their 5, 15, and 25% thresholds with the number of artefacts
that fit in the range. Projects analysed are Ant 1.7 (1113
files), and various extracts from SVN: JMeter (768 files),
Epsilon (777 files) and Sphinx (467 files).
The main advantage of this method is it allows to find

points without knowing the threshold value that makes them
peculiar: e.g. for the cyclomatic complexity, the recom-
mended and argued value of 10 is replaced by a value that
makes those artefacts significantly more complex than the
vast majority of artefacts. This technique is a lot more se-
lective than boxplots and thus produces less artefacts with
higher values.

4.2 Boxplots
One of the simplest statistical outlier detection methods

was introduced by Laurikkala et al. [28] and uses informal
box plots to pinpoint outliers on individual variables. Sim-
ply put, boxplots draw first and third quartile
We applied the idea of series union and intersection2 from

Cook et al. [13] to outliers detection, a data point being a
multi-dimensional outlier if many of its variables are them-
selves outliers. The rationale is that a file with unusually
2In [13] authors use univariate series unions and intersec-
tions to better visualise and understand data repartition.

Table 1: Number of outliers for percents of maxi-
mum metric value for some projects.

Ant Max 25% 15% 5%
SLOC 1546 1160 (3) 1315 (2) 1469 (1)
NCC 676 507 (3) 575 (2) 643 (2)
VG 356 267 (3) 303 (2) 339 (1)
JMeter Max 25% 15% 5%
SLOC 972 729 (3) 827 (1) 924 (1)
NCC 669 502 (5) 569 (3) 636 (1)
VG 172 129 (4) 147 (2) 164 (1)
Epsilon Max 25% 15% 5%
SLOC 3812 3812 (6) 4320 (6) 4828 (6)
NCC 9861 7396 (6) 8382 (6) 9368 (2)
VG 1084 813 (6) 922 (6) 1030 (6)
Sphinx Max 25% 15% 5%
SLOC 1195 897 (5) 1016 (4) 1136 (1)
NCC 1067 801 (2) 907 (2) 1014 (1)
VG 310 233 (2) 264 (2) 295 (2)

high complexity, size, number of commits, and say a very
bad comment ratio is an outlier, because of its maintain-
ability issues and development history.
We first tried to apply this method to the full set of avail-

able metrics, by sorting the components according to the
number of variables that are detected as univariate outliers.
The drawback of this accumulative technique is its depen-
dence on the selected set of variables: highly correlated met-
rics like line-counting measures will quickly trigger big com-
ponents even if all of their other variables show standard
values. Having a limited set of orthogonal metrics with low
correlation is needed to balance the available information.

Figure 2: Univariate boxplot outliers on SLOC and
VG for Ant 1.7.

Figure 2 shows the SLOC and VG metrics on files for
the Ant 1.7 release, with outliers highlighted in blue for
VG (111 items), green for SLOC (110 items), and red for
the intersection of both (99 items). The same technique
was applied with three metrics (SLOC, VG, NCC) and their
intersection in figure 3. There are 108 NCC outliers (plotted
in orange) and the intersecting set (plotted in red) has 85

outliers. Intersecting artefacts cumulate outstanding values
on the three selected metrics.

Figure 3: Univariate boxplot outliers on SLOC, VG
and NCC for Ant 1.7.

Because of the underlying distribution of measures how-
ever the classical boxplot shows too many outliers – or at
least too many for practical improvement. We used a more
robust boxplots algorithm [43] targeted at skewed distribu-
tions3 and had better results with fewer, more atypical arte-
facts.

4.3 Clustering
Clustering techniques allow us to find categories of simi-

lar data in a set. If a data point cannot fit into a cluster,
or if it is in a small cluster (i.e. there are very few items
that have these similar characteristics), then it can be con-
sidered an outlier [33, 45]. In this situation, we want to use
clustering algorithms that produce unbalanced trees rather
than evenly distributed sets. Typical clustering algorithms
used for outliers detection are k-means [19, 51] and hierar-
chical [16, 3]. We used the latter because of the very small
clusters it produces and its fast implementation in R [41].
We applied hierarchical clustering to file measures with

different distances and agglomeration methods. On the Apache
Ant 1.7 source release (1113 files) we get the repartition of
artefacts shown in table 2 with Euclidean and Manhattan
distances. Linkage methods investigated are Ward, Average,
Single, Complete, McQuitty, Median and Centroid.
The Manhattan distance gives more small clusters than

the Euclidean distance. The aggregation method used also
has a great impact: the ward method draws more evenly dis-
tributed clusters while the single method consistently gives
many clusters with only a few individuals.
Metrics selection has a great impact on results. They have

to be carefully selected accordingly to the aim of the analy-
sis. As an example the same detection technique (i.e. same
distance and linkage method) was applied to different sets
of metrics in figure 4: outliers are completely different, and
are even difficult to see4. Using too many metrics usually
3Extremes of the upper and whiskers of the adjusted box-
plots are computed using the medcouple, a robust measure
of skewness.
4Remember section 3.3 about visualisation.

Table 2: File clusters.
Euclidean distance
Method used Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7
Ward 226 334 31 97 232 145 48
Average 1006 6 19 76 3 1 2
Single 1105 3 1 1 1 1 1
Complete 998 17 67 3 21 3 4
McQuitty 1034 6 57 10 3 1 2
Median 1034 6 66 3 1 2 1
Centroid 940 24 142 3 1 2 1
Manhattan distance
Method used Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7
Ward 404 22 87 276 62 196 66
Average 943 21 139 4 3 1 2
Single 1105 3 1 1 1 1 1
Complete 987 17 52 3 47 3 4
McQuitty 1031 12 60 3 1 4 2
Median 984 6 116 3 1 2 1
Centroid 942 24 140 3 1 2 1

Figure 4: Outliers in clusters: different sets of met-
rics.

gives bad or unusable results: because of their relationships,
the diversity of information they deliver and our ability to
capture this information and its consequences.

5. IMPLEMENTING OUTLIERS DETECTION

5.1 Overview
These techniques have been prototyped in SQuORE, a

commercial software project quality assessment tool [4]. SQuORE
has a modular, plugin-based architecture that makes it easy
to integrate with various data providers, and provides a
fully-featured dashboard for the presentation of results.
For our purpose, we decided to identify two different types

of outliers: functions that are considered as untestable (high
complexity, deep nesting, huge number of execution paths)
and files with obfuscated code. For each of these we follow
the directives proposed in section 3.3 and give their defini-
tion, usage, and implementation. The validation steps we
used are also described.
Detected outliers are displayed in dedicated action lists,

with the reasons of their presence in the list and corrective
actions that can be undertaken to improve them. Coloured
plots allow to highlight artefacts on various metrics, showing
graphical evidence of their outlierness.

5.2 Untestable functions

5.2.1 Definition
Complex files are difficult to test and maintain because a

large number of tests should be written before reaching a fair
test coverage ratio, and developers who need to understand
and modify the code will most probably have trouble un-
derstanding it, thus increasing the possibility of introducing
new bugs [21, 22]. Furthermore complex files induce higher
maintenance costs [5]. As a consequence, they shoud be
identified so developers know they should be careful when
modifying them. They also can be used as a short-list of
action items when refactoring [36, 47].
Complexity relies on a number of parameters [48]. Tra-

ditional methods used by practitionners to spot untestable
files usually rely on a set of control-flow related metrics with
static thresholds: cyclomatic complexity (>10) and levels of
nesting in control loops (>3) are common examples.

5.2.2 Implementation
We selected with our team of experts a set of three metrics

that directly impact the complexity of code, thus threaten-
ing its testability, understandability and changeability: level
of nesting in control loops (NEST), cyclomatic complexity
(VG), and number of execution paths (NPAT). In this spe-
cific case we are solely interested in the highest values of
variables. We also know that an extreme value on a single
metric is enough to threaten the testability of the artefact.
Hence we applied the simple tail-cutting algorithm to uni-
variate series, and listed as outliers all artefacts that had at
least one extreme metric value.

5.2.3 Validation
This technique was applied to a set of open-source C and

Java projects5 and the resulting set of functions was com-
pared to those identified with traditional thresholds. While
most untestable functions were present in both lists, we also
identified artefacts that were exclusively selected by one or
the other method. The traditional method needs all selected
triggers on metrics to be met, hence an artefact with an ex-
tremely high nesting but with standard cyclomatic complex-
ity would not be selected. Figure 5 shows such examples of
functions with a low number of execution paths but a re-
ally deep nesting. On the other hand static triggers may
give in some situations a huge number of artefacts, which is
inefficient for our purpose.
We cross-validated these results by asking a group of soft-

ware engineering experts to review the list of untestable
functions that were found exclusively by our method. Their
analysis confirmed that the resulting set was both complete
and more practical: in the cases where our method outputs
more untestable artefacts, they were consistently recognised
as being actually difficult to test, read and change.

5.3 Obfuscated code

5.3.1 Definition
Code obfuscation is a protection mechanism used to limit

the possibility of reverse engineering or attack activities on
a software system [10]. They are also sometimes intended
5Projects analysed are: Evince, Agar, Amaya, Mesa, Ant,
JMeter, Sphinx, Papyrus, Jacoco, HoDoKu, Freemind and
JFreeChart.

Figure 5: Untestable functions for Evince (2818
functions).

as challenging games by developers [38], but they generally
threaten the understandability and maintainability of soft-
ware. Bugs are also more difficult to detect and fix. Obfus-
cated code is usually identified by humans, although some
automatic methods have been proposed for security-related
concerns [12].
Obfuscated files should be identified, analysed and even-

tually rewritten. Clear warnings should be displayed when
modifying them. They are rather rare events in the normal
development of a product, but their impact is such that iden-
tifying them is of primary importance for the understand-
ability and overall maintainability of a software product.

5.3.2 Implementation
One of the remarkable characteristics of obfuscated code is

its unusual amount and diversity of operands and operators
compared to the number of lines of code. We thus selected
for our search Halstead’s base metrics (n1, n2, N1 and N2)
along with the size of artefact, measured as lines of code.
Simple tail-cutting and clustering detection techniques were
applied at both the function and file levels, and artefacts
that were found by both methods tagged as obfuscated.
Very small files however tend to have an artificially high

density because of their low number of lines rather than
their number of operands or operators. For our purpose we
decided to dismiss obfuscated code that is shorter than a
few lines in the file-level analysis.

5.3.3 Validation
Obfuscated files retrieved from the International Obfus-

cated C Code Contest [38] were hidden in the source code
of four open-source C projects (Evince, Agar, Amaya and
Mesa). Analysis extracted them all with 100% accuracy. If
we use the union of tail-cutting and clustering outliers in-
stead of the intersection, we also get regular files from the
projects with strong obfuscation characteristics. Figure 6
shows clusters (left) and tail-cutting (right) outliers on Hal-
stead’s n1 and n2 metrics. It is interesting to note that the
coloured artefacts are not necessarily outliers on these two
metrics since we are in a multi-dimensional analysis.

Figure 6: Obfuscated files from clusters and tail-
cutting.

6. CONCLUSION
Outliers detection may bring very useful insights for soft-

ware development, maintenance and comprehension if they
are carefully specified. For this we need to define exactly
what we are looking for and what it means to the user: spe-
cific outliers detection techniques should serve a clear cut
purpose and fill specific requirements and needs for the user.
One of the main benefits of outliers detection techniques

in the context of software engineering is they propose dy-
namic triggering values for artefacts selection. Dynamic
tresholds have two advantages over static limits: firstly they
usually find a fair (low) number of outliers where static
thresholds may bring hundreds of them on complex systems,
and secondly their ability to adapt themselves to a context
make them applicable and more robust in a wider range of
types of systems. As an example, McCabe recommands to
not exceed a threshold of 10 for cyclomatic complexity in
functions [35]. This has been widely debated since then,
and no definitive value came out that could fit every do-
main. By using dynamic thresholds we are able to highlight
very complex artefacts in the specific context of the project,
and even to set a recommended value for the organisation’s
coding conventions.
The usage of outliers detection techniques shall be driven

by the goals and semantic context of the mining task. As an
example, it may be wise to detect obfuscated code and re-
move them before the analysis since they don’t fit the usual
quality requirements and may confuse the presentation and
understanding of results. On the other hand maintainabil-
ity outliers must be included in the analysis and results
since they really bring useful information for software main-
tenance and evolution.
Different outliers detection techniques can be used and

combined to get the most of their individual benefits. The
three outliers detection techniques we studied have distinct
characteristics: tail-cutting and boxplots look for extreme
values at different output rate, while clusters rather find
similarities in artefacts. By combining these techniques we
were able to adapt the behaviour of the analysis and specif-
ically identify given types of artefacts with great accuracy.
Metrics selection is of primary importance when ap-

plying mining techniques to data sets, because of the tight
relationships between metrics and the semantic users can
attach to them. A small set of carefully selected metrics is
easier to understand and gives more predictable results.

7. REFERENCES
[1] C. C. Aggarwal and P. S. Yu. Outlier detection for

high dimensional data. ACM SIGMOD Record,
30(2):37–46, June 2001.

[2] M. Al-Zoubi. An effective clustering-based approach
for outlier detection. European Journal of Scientific
Research, 2009.

[3] J. Almeida and L. Barbosa. Improving hierarchical
cluster analysis: A new method with outlier detection
and automatic clustering. Chenometrics and
Intelligent Laboratory Systems, 87(2):208–217, 2007.

[4] B. Baldassari. SQuORE: A new approach to software
project quality measurement. In International
Conference on Software & Systems Engineering and
their Applications, 2012.

[5] R. D. Banker, S. M. Datar, C. F. Kemerer, and
D. Zweig. Software complexity and maintenance costs.
Communications of the ACM, 36(11):81–94, Nov.
1993.

[6] B. Boehm and V. Basili. Software Defect Reduction
Top 10 List. Computer, pages 123–137, 2001.

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. Local Outlier Factor: Identifying
Density-Based Local Outliers. ACM SIGMOD Record,
29(2):93–104, June 2000.

[8] G. Canfora and L. Cerulo. Impact analysis by mining
software and change request repositories. In 11th
IEEE International Symposium on Software Metrics,
pages 1–9, 2005.

[9] S. Cateni, V. Colla, and M. Vannucci. Outlier
Detection Methods for Industrial Applications.
Advances in robotics, automation and control, pages
265–282, 2008.

[10] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin,
F. Ricca, M. Torchiano, and P. Tonella. The
effectiveness of source code obfuscation: An
experimental assessment. In 2009 IEEE 17th
International Conference on Program Comprehension,
pages 178–187. IEEE, May 2009.

[11] V. Chandola, A. Banerjee, and V. Kumar. Outlier
Detection : A Survey. ACM Computing Surveys, 2007.

[12] M. Christodorescu and S. Jha. Static Analysis of
Executables to Detect Malicious Patterns. Technical
report, DTIC Document, 2006.

[13] D. Cook and D. Swayne. Interactive and Dynamic
Graphics for Data Analysis: With R and GGobi. 2007.

[14] N. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Transactions on Software Engineering, 26(8):797–814,
2000.

[15] P. Filzmoser, R. Maronna, and M. Werner. Outlier
identification in high dimensions. Computational
Statistics & Data Analysis, 52(3):1694–1711, 2008.

[16] A. Gordon. Classification, 2nd Edition. Chapman and
Hall/CRC, 1999.

[17] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko,
W. Wang, R. Holmes, and M. W. Godfrey. The MSR
Cookbook. In 10th International Workshop on Mining
Software Repositories, pages 343–352, 2013.

[18] V. Hodge and J. Austin. A survey of outlier detection
methodologies. Artificial Intelligence Review,
22(2):85–126, 2004.

[19] M. Jiang, S. Tseng, and C. Su. Two-phase clustering
process for outliers detection. Pattern recognition
letters, 22(6):691–700, 2001.

[20] C. Kaner and W. P. Bond. Software engineering
metrics: What do they measure and how do we know?
In 10th International Software Metrics Symposium,
METRICS 2004, pages 1–12, 2004.

[21] C. F. Kemerer. Software complexity and software
maintenance: A survey of empirical research. Annals
of Software Engineering, 1(1):1–22, Dec. 1995.

[22] T. Khoshgoftaar and J. Munson. Predicting software
development errors using software complexity metrics.
IEEE Journal on Selected Areas in Communications,
8(2):253–261, 1990.

[23] B. Kitchenham, S. Pfleeger, L. M. Pickard, P. W.
Jones, D. C. Hoaglin, K. E. Emam, and J. Rosenberg.
Preliminary guidelines for empirical research in
software engineering. IEEE Transactions on Software
Engineering, 28(8):721–734, 2002.

[24] E. Knorr and R. Ng. Algorithms for mining
distance-based outliers in large datasets. In
Proceedings of the International Conference on Very
Large Data Bases, volume 8.3, 1998.

[25] Y. Kou, C.-T. Lu, S. Sirwongwattana, and Y.-P.
Huang. Survey of fraud detection techniques. In 2004
IEEE International Conference on Networking,
Sensing and Control, pages 749–754, 2004.

[26] M. Last, M. Friedman, and A. Kandel. The data
mining approach to automated software testing. In
Proceedings of the 9th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 388–396, 2003.

[27] M. Last and A. Kandel. Automated Detection of
Outliers in Real-World Data. In Proceedings of the
second international conference on intelligent
technologies, pages 292–301, 2001.

[28] J. Laurikkala, M. Juhola, and E. Kentala. Informal
identification of outliers in medical data. In
Proceedings of the 5th International Workshop on
Intelligent Data Analysis in Medicine and
Pharmacology, pages 20–24, 2000.

[29] A. Lazarevic, L. Ertoz, and V. Kumar. A comparative
study of anomaly detection schemes in network
intrusion detection. Proc. SIAM, 2003.

[30] R. Lincke, J. Lundberg, and W. Löwe. Comparing
software metrics tools. Proceedings of the 2008
international symposium on Software testing and
analysis - ISSTA ’08, page 131, 2008.

[31] A. Loureiro, L. Torgo, and C. Soares. Outlier
detection using clustering methods: a data cleaning
application. In roceedings of KDNet Symposium on
Knowledge-based systems for the Public Sector, 2004.

[32] P. Louridas, D. Spinellis, and V. Vlachos. Power laws
in software. ACM Transactions on Software
Engineering and Methodology, 18(1):1–26, Sept. 2008.

[33] O. Maimon and L. Rokach. Data Mining and
Knowledge Discovery Handbook. Kluwer Academic
Publishers, 2005.

[34] M. Mansur, M. Sap, and M. Noor. Outlier Detection
Technique in Data Mining: A Research Perspective. In
Proceedings of the Postgraduate Annual Research

Seminar, pages 23–31, 2005.
[35] T. McCabe. A complexity measure. Software

Engineering, IEEE Transactions on, (4):308–320,
1976.

[36] T. Mens and T. Tourwé. A survey of software
refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, 2004.

[37] T. Menzies, C. Bird, and T. Zimmermann. The
inductive software engineering manifesto: Principles
for industrial data mining. In Proceedings of the
International Workshop on Machine Learning
Technologies in Software Engineering, Lawrence,
Kansas, USA, 2011.

[38] L. C. Noll, S. Cooper, P. Seebach, and A. B. Leonid.
The International Obfuscated C Code Contest.

[39] M. C. Paulk, K. L. Needy, and J. Rajgopal. Identify
outliers, understand the Process. ASQ Software
Quality Professional, 11(2):28–37, 2009.

[40] C. Phua, V. Lee, K. Smith, and R. Gayler. A
comprehensive survey of data mining-based fraud
detection research. arXiv preprint arXiv:1009.6119,
2010.

[41] R Core Team. R: A Language and Environment for
Statistical Computing, 2013.

[42] M. Robillard and R. Walker. Recommendation
systems for software engineering. Software, IEEE,
pages 80–86, 2010.

[43] P. Rousseeuw, C. Croux, V. Todorov, A. Ruckstuhl,
M. Salibian-Barrera, T. Verbeke, M. Koller, and
M. Maechler. {robustbase}: Basic Robust Statistics. R
package version 0.9-10., 2013.

[44] M. Shaw. Prospects for an Engineering Discipline of
Software. IEEE Software, (November):15–24, 1990.

[45] G. Singh and V. Kumar. An Efficient Clustering and
Distance Based Approach for Outlier Detection.
International Journal of Computer Trends and
Technology, 4(7):2067–2072, 2013.

[46] K. Singh and S. Upadhyaya. Outlier Detection :
Applications And Techniques. In International Journal
of Computer Science, volume 9, pages 307–323, 2012.

[47] K. Stroggylos and D. Spinellis. Refactoring – Does It
Improve Software Quality? In Fifth International
Workshop on Software Quality, ICSE Workshops 2007,
pages 10–16. IEEE, 2007.

[48] E. Weyuker. Evaluating software complexity measures.
IEEE Transactions on Software Engineering,
14(9):1357–1365, 1988.

[49] C. Wohlin, M. Höst, and K. Henningsson. Empirical
research methods in software engineering. Empirical
Methods and Studies in Software Engineering, pages
7–23, 2003.

[50] W. Wong, A. Moore, G. Cooper, and M. Wagner.
Bayesian network anomaly pattern detection for
disease outbreaks. In ICML, pages 808–815, 2003.

[51] K.-A. Yoon, O.-S. Kwon, and D.-H. Bae. An
Approach to Outlier Detection of Software
Measurement Data using the K-means Clustering
Method. In Empirical Software Engineering and
Measurement, pages 443–445, 2007.

[52] H. Zhang. On the distribution of software faults.
Software Engineering, IEEE Transactions on, 2008.

A practitioner approach to software engineering data
mining

Boris Baldassari
SQuORING Technologies
76, Avenue Jean Jaurès

Toulouse, France
boris.baldassari@squoring.com

Philippe Preux
INRIA Lille

165, Avenue de Bretagne
Lille, France

philippe.preux@lille.inria.fr

ABSTRACT
As an emerging discipline, software engineering data mining
has made important advances in recent years. These in turn
have produced new tools and methods for the analysis and
improvement of software products and practices.

Building upon the experience gathered on software mea-
surement programs, data mining takes a wider and deeper
view on software projects by introducing unusual kinds of
information and addressing new software engineering con-
cerns. On the one hand software repository mining brings
new types of process- and product-oriented metrics along
with new methods to use them. On the other hand the data
mining field introduces more robust algorithms and practical
tools, thus allowing to face new challenges and requirements
for mining programs.

However some of the concerns risen years ago about soft-
ware measurement programs and the validity of their results
are still relevant to this novel approach. From data retrieval
to organisation of quality attributes and results presenta-
tion, one has to constantly check the validity of the analysis
process and the semantics of the results.

This paper focuses on practical software engineering data
mining. We first draw a quick landscape of software engi-
neering data, how they can be retrieved, used and organised.
Then we propose some guidelines to conduct a successful and
efficient software data mining program and describe how we
applied it to the case of Polarsys, an Eclipse working group
targeted at project quality assessment and improvement.

Keywords
Data Mining, Software Development, Software Metrics, Min-
ing Repositories

1. INTRODUCTION
Software engineering data mining is at the crossroads of

two developing fields that tremendously advanced in the
recent years. From the software engineering perspective,
lessons learned from years of failing and successful software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
International Conference on Software Engineering 2014 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

projects have been cataloged and now provide a compre-
hensive set of practices and empirical knowledge – although
some concepts still miss a common, established consensus
among actors of the field. Software measurement programs
have been widely studied and debated and now offer a com-
prehensive set of recommendations and known issues for
practitioners. On the data mining side research areas like
software repository mining [16], categorisation (clustering)
of artefacts, program comprehension [11, 32], or developer
assistance [36, 15, 25, 7] have brought new insights and new
perspectives with regards to data available for analyses and
the guidance that can be drawn from them.

This has led to a new era of knowledge for software mea-
surement programs, which expands their scope beyond sim-
ple assessment concerns. Data mining programs have enough
information at hand to leverage quality assessment to prag-
matic recommendations and improvement of the process,
practices and overall quality of software projects.

In this paper we review practices established for software
measurement programs and consider them from the perspec-
tive of practical quality improvement, from data retrieval in
software repositories to definition and organisation of qual-
ity attributes and to the publication of results. The experi-
ence gathered in the context of a high-constraints industrial
software measurement program is reported to illustrate the
proposed approach.

This paper is organised as follows: section 2 takes an in-
ventory of the experience gained on software measurement
programs and proposes in section 3 a series of steps to be fol-
lowed to preserve the consistency and validity of data mining
programs. Section 4 draws a landscape of the information
that can be gathered on software projects, pointing out the
difficulties and pitfalls of data retrieval. The approach is
then illustrated through the Eclipse use case in section 5.
Finally, section 6 summarises the main ideas of the paper
and proposes future directions for upcoming work.

2. FROM MEASUREMENT TO DATA MIN-
ING

2.1 Software measurement programs
The art of measurement is very old and mature compared

to software engineering. Some of the concepts that seem
natural for usual measures (such as the height of a per-
son) become difficult to apply when it comes to software
engineering [12, 22]. As an example, one of the issues en-
countered with software measurement programs is the gap
between quality models and metrics. Although many pa-

rameters are known to influence each quality factor (e.g.
the maintainability), there is no established, comprehensive
and recognised mapping between metrics and attributes of
quality.

Furthermore people have different ideas and experiences of
software characteristics, which makes it difficult to work on
the same footing1. If the analysis process is too complex or
not transparent enough, users will have trouble to retain the
meaningfulness of data and results. Practictioners setting
up a mining program should be familiar with the experience
and conclusions of software measurement programs [19, 14,
17, 26] to avoid most common pitfalls.

To circumvent these problems, Victor Basili proposed in [5]
the Goal-Question-Metric approach to better understand
and conduct a software measurement program. Linda West-
fall et al. [34] further enhanced this approach with 12 steps to
be thoroughly followed for better chances of success. Many
aspects of the approach we propose rely on the principles
they have codified.

2.2 Notions of quality
If one intends to improve software quality then one will

first need to define it in one’s own specific context. Dozens
of definitions have been proposed and widely debated for
software quality, from conformance to requirements [9] to
fitness for use [21], but none of them gained a definitive
acceptance among the community or the industry – because
the notion of quality may vary.

Standards like ISO 9126 [18] or the 250XX series pro-
pose interesting references for product quality and have been
quite well adopted by the software industry. The ISO 15504
and CMMi standards provide useful guidelines for process
maturity assessment and improvement at the organisation
level. Kitchenham and Pfleeger [23], further citing Garvin’s
teachings on product quality, conclude that “quality is a
complex and multifaceted concept that can be described
from five different perspectives”:

• The transcendental view sees quality as something that
can be recognised but hardly defined.

• The user view sees quality as fitness for purpose.

• The manufacturing view sees quality as conformance
to specification.

• The product view attaches quality to inherent charac-
teristics of the product.

• The value-based view sees quality as the interest or
money users will put on it.

Even in the restricted situation of a specific software project
most people will implicitly have different meanings for qual-
ity. For that reason the requirements and notion of quality
need to be publicly discussed and explicitly stated. Rely-
ing on well-known definitions and concepts issued from both
standards and experts in the domain greatly helps actors to
reach an agreement.

1As an example the idea of high complexity heavily differs
when considered in critical embedded systems or in desktop
products

2.3 Specific benefits of data mining
Data mining offers a new perspective on the information

available from software projects, thus unleashing new, pow-
erful tools and methods for our activity. While software
measurement programs allow to assess aspects of the prod-
uct or project quality, software data mining programs offer
enough information to build upon the assessment phase and
deliver practical recommendations for the improvement of
the desired attributes of quality. In the context of software
development this can be achieved through e.g. action lists
for refactoring, maintainability warnings for overly complex
files, or notice when too many support questions lie unan-
swered.

Data mining methods offer a plethora of useful tools for
this purpose. Outliers detection [1, 28, 31] gives precious in-
formation for artefacts or project characteristics that show
a deviation from so-called normal behaviour. Clustering [20,
27] allows to classify artefacts according to multi-dimensional
criteria2. Recommender systems [15, 7, 30] can propose well-
known patterns, code snippets or detect bug patterns.

3. DEFINING THE MINING PROCESS
Considering the above-mentioned perils, we propose a few

guidelines to be followed when setting up a data mining
process. These allow to ensure the integrity and usability
of information and keep all actors synchronised on the same
concerns and solution.

3.1 Declare the intent
The whole mining process is driven by its stated goals.

The quality model and attributes, means to measure it, and
presentation of the results will differ if the program is de-
signed as an audit-like, acceptance test for projects, or as
an incremental quality improvement program to ease evolu-
tion and maintenance of projects. The users of the mining
program, who may be developers, managers, buyers, or end-
users of the product, have to map its objectives to concepts
and needs they are familiar with. Including users in the def-
inition of the intent of the program also helps preventing
counter-productive use of the metrics and quality models.

The intent must be simple, clearly expressed in a few sen-
tences, and published for all considered users of the program.

3.2 Identify quality attributes
The concerns identified in the intent are then decomposed

into quality attributes. This firstly gives a structure to the
quality model, and secondly allows to rely on well-defined
characteristics – which greatly simplifies the communication
and exchange of views. Recognised standards and estab-
lished practices provide useful frameworks and definitions
for this step. One should strive for simplicity when elab-
orating quality attributes and concepts. Common sense is
a good argument, and even actors that have no knowledge
of the field associated to the quality attributes should be
able to understand them. Obscurity is a source of fear and
distrust and must be avoided.

The output of this step is a fully-featured quality model
that reflects all of the expected needs and views of the min-
ing program. The produced quality model is also a point of
convergence for all actors: requirements of different origin

2As an example, maintainability is often empirically esti-
mated using control and data flow complexity.

Figure 1: From quality definition to repository metrics.

and nature are bound together and form a unified, consistent
view.

3.3 Identify available metrics
Once we precisely known what quality characteristics we

are looking for, we have to identify measures that reflect this
information need. Data retrieval is a fragile step of the min-
ing process. Depending on the information we are looking
for, various artefact types and measures may be available:
one has to select them carefully according to their intended
purpose. The different repositories available for the projects
being analysed should be listed, with the measures that may
be retrieved from them. Selected metrics have to be stable
and reliable (i.e. their meaning to users must remain con-
stant over time and usage), and their retrieval automated
(i.e. no human intervention is required).

This step also defines how the metrics are aggregated up to
the top quality characteristics. Since there is no universally
recognised agreement on these relationships one has to rely
on local understanding and conventions. All actors, or at
least a vast majority of them, should agree on the meaning
of the selected metrics and the links to the quality attributes.

3.4 Implementation
The mining process must be fully automated, from data

retrieval to results presentation, and transparently published.
Automation allows to reliably and regularly collect the infor-
mation, even when people are not available3 or not willing to
do it4. From the historical perspective, missing data poses
a serious threat to the consistency of results and to the al-
gorithms used to analyse them – information is often easier
to get at the moment than afterwards. The publishing of

3Nobody has time for data retrieval before a release or dur-
ing holidays.
4Kaner cites in [22] the interesting case of testers waiting
for the release before submitting new bugs, pinning them on
the wall for the time being.

the entire process also helps people understand what qual-
ity is in this context and how it is measured (i.e. no magic),
making them more confident in the process.

3.5 Presentation of results
Visualisation of results is of primary importance for the

efficiency of the information we want to transmit. In some
cases (e.g. for incremental improvement of quality) a short
list of action items will be enough because the human mind
feels more comfortable correcting a few warnings than hun-
dreds of them. But if our goal is to assess the technical debt
of the product, it would be better to list them all to get
a good idea of the actual status of the product’s maintain-
ability. Pictures and plots also show to be very useful to
illustrate ideas and are sometimes worth a thousand words.
If we want to highlight unstable files, a plot showing the
number of recent modifications would immediately spot the
most unstable of them and show how much volatile they are
compared to the average.

Literate data analysis is the application of Donald Knuth’s
literate programming principles to the analysis of data. Re-
producible research is thus made possible through tools like
Sweave [13] or Knitr [35], which allow to generate custom
reports from R data analysis scripts, with dynamically gen-
erated graphics and text.

4. PRACTICAL MINING

4.1 Topology of a software project
Repositories hold all of the assets and information avail-

able for a software project, from code to review reports and
discussions. In the mining process it is necessary to find a
common base of mandatory repositories and measures for
all projects to be analysed: e.g. configuration management,
change management (bugs and change requests), communi-
cation (e.g. forums or mailing lists) and publication (web-

site, wiki). We list thereafter some common repositories and
how they can be used.

It is useful to retrieve information on different time frames
(e.g. yesterday, last week, last month, last three months) to
better grasp the dynamics of the measures. Evolution is
an important aspect of the analysis since it allows users to
understand the link between measures, practices and quality
attributes. It also makes them realise how better or worse
they do with time.

4.2 Source code
Source code is generally extracted from the configuration

management repository at a specific date and for a specific
version (or branch) of the product. Source releases as pub-
lished by open source projects can be used as well but may
heavily differ from direct extracts, because they represent
a subset of the full project repository and may have been
modified during the release process.

Static code analysis [24] tools usually provide metrics and
findings. Measures target intrinsic characteristics of the
code, like its size or the number of nested loops. Findings
are occurrences of non-conformities to some standard rules
or good practices. Tools like Checkstyle [8] or PMD [10]
check for anti-patterns or violations of conventions, and thus
provide valuable information on acquired development prac-
tices [33]. Dynamic analysis gives more information on the
product performance and behaviour [11, 32], but needs com-
piled, executable products – which is difficult to achieve au-
tomatically on a large scale. Dynamic and static analyses
are complementary techniques on completeness, scope, and
precision [4].

4.3 Configuration management
A configuration management system allows to record and

restitute all changes on versioned artefacts, with some useful
information about who did it, when, and (to some extent)
why. It brings useful information on artefacts’ successive
modifications and on the activity and diversity of actors in
the project.

The primary source of data is the verbose log of the repos-
itory branch or trunk, as provided in various formats by all
configuration management tools. The interpretation of met-
rics heavily depends on the configuration management tool
in use and its associated workflow: as an example, commits
on a centralised subversion repository do not have the same
meaning than on a Git distributed repository because of
the branching system and philosophy. A Subversion repos-
itory with hundreds of branches is probably the sign of a
bad usage of the branching system, while it can be consid-
ered normal with Git. In such a context it may be useful
to setup some scales to adapt ranges and compare tools to-
gether. The positioning of the analysis in the configuration
management branches also influences its meaning: working
on maintenance-only branches (i.e. with many bug fixes and
few new features) or on the trunk (next release, with mainly
new features and potentially large refactoring or big-bang
changes) does not yield the same results.

Example of metrics that can be gathered from there are
the number of commits, committers or fix-related commits
on a given period of time. As a note, we defined in our
context a fix-related commit as having one of the terms fix,
bug, issue or error in the message associated to the revision.
Depending on the project tooling and conventions, more so-

phisticated methods may either be set up to establish the
link between bugs and commits [2].

4.4 Change management
A tracker, or bug tracking system, allows to record any

type of items with a defined set of associated attributes.
They are typically used to track bugs and enhancements re-
quests, but may as well be used for requirements or support
requests. The comments posted on issues offer a bunch of
useful information regarding the bug itself and people’s be-
haviour; some studies even treat them as a communication
channel.

A bias may be introduced by different tools and workflows,
or even different interpretations of a same status. A common
work-around is to map actual states to a minimalist set of
useful canonical states: e.g. open, working, verifying, closed.
Almost all life cycles can be mapped to these simple steps
without twisting them too much.

Examples of metrics that can be retrieved from change
management systems include the time to closure, number of
comments, or votes, depending on the system’s features.

4.5 Communication channels
Actors of a software project need to communicate to co-

ordinate efforts, ensure some consistency in coding prac-
tices, or simply get help [29]. This communication may
flow through different means: mailing lists, forums, or news
servers. Every project is supposed to have at least two com-
munication media, one for contributors to exchange on the
product development (the developers mailing list) and an-
other one for the product usage (the users mailing list).

Local customs may impact the analysis of communication
channels. In some cases low-activity projects send commits
or bugs notification to the developer mailing list as a con-
venience to follow repositories activity, or contributors may
use different email addresses or logins when posting – which
makes it difficult, if not impossible, to link their communi-
cations to activity in other repositories. The different com-
munication media can all be parsed to retrieve a common
set of metrics like the number of threads, mails, authors or
response ratio, and time data like the median time to first
response.

4.6 Publication
A project has to make the final product available to its

users along with a number of artefacts such as documenta-
tion, FAQ or How-to’s, or project-related information like
team members, history of the project or advancement of
the next release. A user-edited wiki is a more sophisticated
communication channel often used by open source projects.
The analysis of these repositories may be difficult because
of the variety of publishing engines available: some of them
display the time of last modification and who did it, while
other projects use static pages with almost no associated
meta data. As an example user-edited wikis are quite easy
to parse because they display a whole bouquet of informa-
tion about their history, but may be very time-consuming
to parse because of their intrinsic changeability.

Metrics that can be gathered from these repositories are
commonly linked to the product documentation and commu-
nity wealth characteristics. Examples include the number of
pages, recent modifications or entries in the FAQ, the num-
ber of different authors and readers, or the age of entries

Figure 2: Proposed Eclipse quality model

(which may denote obsolete pages).

5. THE ECLIPSE CASE

5.1 Context of the quality assessment program
The Eclipse foundation is an independent, non-profit cor-

poration founded in 2004 to support the development of the
Eclipse IDE. It is one of the most well-known open source
success stories around, gathering a “vibrant, vendor-neutral
and transparent community” of both open source develop-
ers and industry actors. As a result Eclipse is the most used
IDE in the world with tens of millions of downloads per year.

The Polarsys working group was launched in 2011 to fos-
ter embedded systems development and ecosystem. Its goals
are to provide mature tools, with long-term support (as long
as 75 years in space or aeronautics) and compliance with
safety-critical certification processes. The Maturity Assess-
ment task force was initiated in the beginning of 2013 to
address quality concerns and provide some guarantees on
the components embedded in the Polarsys stack of software.

5.2 Declaration of intent
The objectives of the conducted program have been iden-

tified as follows:

• Assess projects maturity as defined by the Polarsys
working group stated goals. Is the project ready for
large-scale deployments in high-constraints software or-
ganisations? Does it conform to the Eclipse foundation
recommendations?

• Help teams develope better software regarding the qual-
ity requirements defined. Propose guidance to improve
the management, process and product of projects.

• Establish the foundation for a global agreement on qual-
ity conforming to the Eclipse way. A framework to
collaborate on the semantics of quality is the first step
to a better understanding and awareness of these con-
cerns in the Eclipse community.

5.3 Quality requirements
Because of their open-source nature, Eclipse components

have strong maintainability concerns, which are actually re-
enforced for the Polarsys long-term support requirements.

In the spirit of the ISO/IEC 9126 standard[18] these con-
cerns are decomposed in Analysability, Changeability
and Reusability. Another quality requirement is Relia-
bility: Eclipse components are meant to be used in bundles
or stacks of software, and the failure of a single component
may threaten the whole application. For an industrial de-
ployment over thousands of people in worldwide locations
this may have serious repercussions.

The Eclipse foundation has a strong interest in IP manage-
ment and predictability of outputs. Projects are classified
into phases, from proposal (defining the project) to incu-
bating (growing the project) and mature (ensuring project
maintenance and vitality). Different constraints are imposed
on each phase: e.g. setting up reviews and milestones, pub-
lishing a roadmap, or documenting APIs backward compat-
ibility. In the first iteration of the quality model only IP
management and Planning management are addressed.

Communities really lie at the heart of the Eclipse way.
The Eclipse manifesto defines three communities: develop-
ers, adopters, and users. Projects must constitute, then
grow and nurture their communities regarding their activ-
ity, diversity, responsiveness and support capability.
In the context of our program we will mainly focus on de-
veloper and user communities.

5.4 Metrics identification

Source code.
Source code is extracted from Subversion or Git reposito-

ries and analysed with SQuORE [3]. Static analysis was pre-
ferred because automatically compiling the different projects
was unsafe and unreliable. Further analyses may be inte-
grated with continuous build servers to run dynamic analy-
ses as well.

Metrics include common established measures like line-
counting (comment lines, source lines, effective lines, state-
ments), control-flow complexity (cyclomatic complexity, max-
imum level of nesting, number of paths, number of control-
flow tokens) or Halstead’s software science metrics (number
of distinct and total operators and operands).

Findings include violations from SQuORE, Checkstyle and
PMD. All of these have established lists of rules that are
mapped to practices and classified according to their impact
(e.g. reliability, readability, fault tolerance).

Figure 3: Examples of results for the Polarsys mining program.

SCM metadata.
A data provider was developed to retrieve software config-

uration metadata from the two software configuration man-
agement systems used inside Eclipse, Subversion and Git.
The metrics identified are the following: number of com-
mits, committers, committed files, and fix-related commits.
All measures are computed for the last week, last month and
last three months as well as in total. Doing so we get the
ability to catch recent evolutions of the project by giving
more weight to the most recent modifications.

Communication.
Communication channels used at Eclipse are NNTP news,

mailing lists and web forums. All of these can be mapped
and converted to the mbox format, which we then parse
to extract the metrics we need. Metrics retrieved are the
number of threads, distinct authors, the response ratio and
median time to first answer. Metrics are gathered for both
user and developer communities, on different time frames
to better grasp the dynamics of the project evolution (one
week, one month, three months).

Process repository.
The Eclipse foundation has recently started an initiative

to centralise and publish real-time process-related informa-
tion. This information is available through a public API
returning JSON and XML data about every Eclipse compo-
nent. Metrics defined are: number and status of milestones
and reviews, and coverage of intellectual property logs.

5.5 Results
Following the quality requirements established in step 3,

we proposed and documented a quality model to the work-
ing group. People could better visualise the decomposition
of quality and relationships between quality attributes and
metrics. This led to new ideas and constructive feedback
and after some minor changes and improvements the model
represented in figure 2 was officially published on the work-
ing group wiki.

The prototype for this first iteration of the quality pro-
gram has been implemented with SQuORE[3] and provides

several means to deliver the information:

• A quality tree that lists the quality attributes and shows
the conformance to identified requirements (figure 3,
left side). The evolution compared to the last analysis
is also depicted.

• Action lists, classified according to the different con-
cerns identified: overly complex or untestable files,
naming conventions violations, or a refactoring wish
list. An example is shown on the right of figure 3.

• Nice, coloured graphics that immediately illustrate spe-
cific concepts. This proves to be especially useful when
the characteristics of an incriminated file make it sig-
nificantly different than the average so it can be iden-
tified at first sight, as e.g. for highly complex files.

Finally the goals, definitions, metrics and resulting quality
model were presented at the EclipseCon France conference
held in May, 2013 in Toulouse and received good and con-
structive feedback.

6. CONCLUSION
In this study we propose an integrated approach to soft-

ware project management, assessment and improvement through
data mining. Building upon measurement programs experi-
ence and good practices, software data mining unveils new
horizons of information, along with new methods and tools
to extract useful knowledge from it.

The proposed approach focuses on a few key concepts that
aim to gather all actors around a common understanding of
the program’s objectives to produce a consensual evaluation
of the project characteristics and pragmatic recommenda-
tions for its improvement. When software engineering fails
to bring a unanimously accepted definition of some concepts
we rely on local agreement and understanding to institute
specific conventions. Successive iterations of the procedure
and quality model will improve upon the experience and
feedback of users to correct identified issues, address new
concerns, and provide new recommendation types.

We also detail the information available in common soft-
ware repositories, give practical advice as how to extract it,

and list some of the pitfalls that practitioners may encounter
during data retrieval. The application of the proposed ap-
proach to a large-scale mining program with industrial par-
ticipants illustrates how we could get to a common local
agreement on quality definition and improvement and pro-
duce a fully-featured prototype.

Forges are great environments for data mining programs,
because they propose a restricted set of tools and ease the
integration of information across them. The development of
collaborative frameworks such as the Open Services for Life-
cycle Collaboration (OSLC) [6] will also lead to tighter inte-
gration of information coming from different sources. Work-
ing with real-world data and situations also makes a great
difference. We encourage future research work to setup soft-
ware projects mining in production environments to ensure
their usability and relevance to pragmatic concerns. Open
source software forges have a wealth of information available
that can be transformed into useful knowledge, and numer-
ous studies from the data mining field could benefit from this
application, increasing their impact on software engineering
knowledge and practices.

7. REFERENCES
[1] M. Al-Zoubi. An effective clustering-based approach

for outlier detection. European Journal of Scientific
Research, 2009.

[2] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and
A. Bernstein. The Missing Links: Bugs and Bug-fix
Commits. 2010.

[3] B. Baldassari. SQuORE: A new approach to software
project quality measurement. In International
Conference on Software & Systems Engineering and
their Applications, 2012.

[4] T. Ball. The Concept of Dynamic Analysis. In
Software Engineering—ESEC/FSE’99, pages 216–234,
1999.

[5] V. R. Basili, G. Caldiera, and H. D. Rombach. The
Goal Question Metric approach, 1994.

[6] O. Berger, S. Labbene, M. Dhar, and C. Bac.
Introducing OSLC, an open standard for
interoperability of open source development tools. In
International Conference on Software & Systems
Engineering and their Applications, pages 1–8, 2011.

[7] M. Bruch and M. Mezini. Improving Code
Recommender Systems using Boolean Factor Analysis
and Graphical Models. 2010.

[8] O. Burn. Checkstyle, 2001.

[9] P. B. Crosby. Quality is free: The art of making quality
certain, volume 94. McGraw-Hill New York, 1979.

[10] D. Dixon-Peugh. PMD, 2003.

[11] T. Eisenbarth. Aiding program comprehension by
static and dynamic feature analysis. In International
Conference on Software Maintenance, 2001.

[12] N. Fenton. Software Measurement: a Necessary
Scientific Basis. IEEE Transactions on Software
Engineering, 20(3):199–206, Mar. 1994.

[13] Friedrich Leisch. Sweave. Dynamic generation of
statistical reports using literate data analysis.
Technical Report 69, SFB Adaptive Information
Systems and Modelling in Economics and
Management Science, WU Vienna University of
Economics and Business, Vienna, 2002.

[14] A. Gopal, M. Krishnan, T. Mukhopadhyay, and
D. Goldenson. Measurement programs in software
development: determinants of success. IEEE
Transactions on Software Engineering, 28(9):863–875,
Sept. 2002.

[15] H.-J. Happel and W. Maalej. Potentials and challenges
of recommendation systems for software development.
In Proceedings of the 2008 international workshop on
Recommendation systems for software engineering,
pages 11–15. ACM, 2008.

[16] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko,
W. Wang, R. Holmes, and M. W. Godfrey. The MSR
Cookbook. In 10th International Workshop on Mining
Software Repositories, pages 343–352, 2013.

[17] H. Ircdenkscn, I. Vcj, and J. Iversen. Implementing
Software Metrics Programs: A Survey of Lessons and
Approaches. Information Technology and
Organizations: Trends, Issues, Challenges and
Solutions, 1:197–201, 2003.

[18] ISO. ISO/IEC 9126 Software Engineering - Product
Quality - Parts 1-4. Technical report, ISO/IEC, 2005.

[19] J. Iversen and L. Mathiassen. Lessons from
implementing a software metrics program. In
Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, pages 1–11. IEEE,
2000.

[20] G. S. D. S. Jayakumar and B. J. Thomas. A New
Procedure of Clustering Based on Multivariate Outlier
Detection. Journal of Data Science, 11:69–84, 2013.

[21] J. M. Juran, A. B. Godfrey, R. E. Hoogstoel, and
E. G. Schilling. Juran’s Quality Handbook, volume 2.
McGraw Hill New York, 1999.

[22] C. Kaner and W. P. Bond. Software engineering
metrics: What do they measure and how do we know?
In 10th International Software Metrics Symposium,
METRICS 2004, pages 1–12, 2004.

[23] B. Kitchenham and S. Pfleeger. Software quality: the
elusive target. IEEE Software, 13(1):12–21, 1996.

[24] P. Louridas. Static Code Analysis. IEEE Software,
23(4):58–61, 2006.

[25] M. R. Marri, S. Thummalapenta, and T. Xie.
Improving Software Quality via Code Searching and
Mining. Source, pages 33–36, 2009.

[26] T. Menzies, C. Bird, and T. Zimmermann. The
inductive software engineering manifesto: Principles
for industrial data mining. In Proceedings of the
International Workshop on Machine Learning
Technologies in Software Engineering, Lawrence,
Kansas, USA, 2011.

[27] B. B. Naib. An Improved Clustering Approach for
Software Quality Analysis. International Journal of
Engineering, Applied and Management Sciences
Pradigms, 05(01):96–100, 2013.

[28] M. S. D. Pachgade and M. S. S. Dhande. Outlier
Detection over Data Set Using Cluster-Based and
Distance-Based Approach. International Journal of
Advanced Research in Computer Science and Software
Engineering, 2(6):12–16, 2012.

[29] E. Raymond. The cathedral and the bazaar.
Knowledge, Technology & Policy, 1999.

[30] M. Robillard and R. Walker. Recommendation

systems for software engineering. IEEE Software,
27(4):80–86, 2010.

[31] G. Singh and V. Kumar. An Efficient Clustering and
Distance Based Approach for Outlier Detection.
International Journal of Computer Trends and
Technology, 4(7):2067–2072, 2013.

[32] M.-A. Storey. Theories, methods and tools in program
comprehension: Past, present and future. In 13th
International Workshop on Program Comprehension
(IWPC 2005). IEEE Computer Society, 2005.

[33] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer,
and M. Schwalb. An Evaluation of Two Bug Pattern
Tools for Java. In 2008 International Conference on

Software Testing, Verification, and Validation, pages
248–257. Ieee, Apr. 2008.

[34] L. Westfall and C. Road. 12 Steps to Useful Software
Metrics. Proceedings of the Seventeenth Annual Pacific
Northwest Software Quality Conference, 57 Suppl
1(May 2006):S40–3, 2005.

[35] Y. Xie. Knitr: A general-purpose package for dynamic
report generation in R. Technical report, 2013.

[36] T. Zimmermann, A. Zeller, P. Weissgerber, and
S. Diehl. Mining version histories to guide software
changes. IEEE Transactions on Software Engineering,
31(6):429–445, 2005.

Understanding software evolution:
The Maisqual Ant data set

Boris Baldassari
SQuORING Technologies

Toulouse, France
Email: boris.baldassari@squoring.com

Philippe Preux
SequeL, LIFL, CNRS, INRIA

Université de Lille
Email: philippe.preux@inria.fr

Abstract—Software engineering is a maturing disci-
pline which has seen many drastic advances in the last
years. However, some studies still point to the lack
of rigorous and mathematically grounded methods to
raise the field to a new emerging science, with proper
and reproducible foundations to build upon. Indeed,
mathematicians and statisticians do not necessarily
have software engineering knowledge, while software
engineers and practitioners do not necessarily have a
mathematical background.

The Maisqual research project intends to fill the gap
between both fields by proposing a controlled and peer-
reviewed data set series ready to use and study. These
data sets feature metrics from different repositories,
from source code to mail activity and configuration
management meta data. Metrics are described and
commented, and all steps followed for their extraction
and treatment are described with contextual informa-
tion about the data and its meaning.

This article introduces the Apache Ant weekly data
set, featuring 636 extracts of the project over 12 years
at different levels of artefacts – application, files, func-
tions. By associating community and process related
information to code extracts, this data set unveils
interesting perspectives on the evolution of one of the
great success stories of open source.

Index Terms—Data mining Software Engineering
Software Metrics

I. Introduction
In the last 30 years, software has become ubiquitous

both in the industry (from Internet to business intelligence
to supply chain automation) and in our daily lives. As a
consequence, characteristics of software such as reliability,
performance or maintainability have become increasingly
important – either for stakeholders, developers, or end-
users. Research on software metrics was introduced a long
time ago to help and support the field, but despite some
remarkable advances there are still many critics (most
notably from Fenton [1] and Kaner [2]) as to the scientific
approach and overall mathematical rigour needed to build
scientific methods.

Most of the studies that cover software engineering
concerns use their own retrieval process and work on
unpublished, non-verifiable data. This fact definitely in-
fluences the credibility of studies, and lends credence to
criticism about the relevance, reproducibility and usability

of their conclusions. The proposed data set intends to
establish a bedrock for upcoming studies by providing a
consistent and peer-reviewed set of measures associated
to various and unusual characteristics extracted from
heterogeneous sources: mails, configuration management
and coding rules. It provides a set of metrics gathered
on a long-running, real-world project, and states their
definitions and requirements. It is designed to be easily
imported with any statistical program.

In section II, we describe the structure and contents of
the data set, and give information on the project history.
Section III enumerates the various types of measures
retrieved and how they are integrated, and section IV lists
the coding rules checked on code. Section V proposes a
few examples of usage for the data set. Finally, we state
our on-going and future work regarding these concerns in
section VI.

II. Data set description
A. The Ant project

The early history of Ant begins in the late nineties
with the donation of the Tomcat software from Sun to
Apache. From a specific build tool, it evolved steadily
through Tomcat contributions to be more generic and
usable. James Duncan Davidson announced the creation
of the Ant project on the 13 January 2000, with its own
mailing lists, source repository and issue tracking.

TABLE I: Major releases of Ant.
Date Version SLOC Files Functions
2000-07-18 1.1 9671 87 876
2000-10-24 1.2 18864 171 1809
2001-03-02 1.3 33347 385 3332
2001-09-03 1.4 43599 425 4277
2002-07-15 1.5 72315 716 6782
2003-12-18 1.6 97925 906 9453
2006-12-19 1.7 115973 1113 12036
2010-02-08 1.8 126230 1173 12964

There have been many versions since then: 8 major
releases and 15 updates (minor releases). The data set ends
in July 2012, and the last version officially released at that
time is 1.8.4. Table I lists major releases of Ant with some
characteristics of official builds as published. It should be
noted that these characteristics may show inconsistencies

with the data set, since the build process extracts and
transforms a subset of the actual repository content.

Ant is arguably one of the most relevant examples
of a successful open source project: from 2000 to 2003,
the project attracted more than 30 developers whose
efforts contributed to nominations for awards and to its
recognition as a reliable, extendable and well-supported
build standard for both the industry and the open source
community.

An interesting aspect of the Ant project is the amount
of information available on the lifespan of a project:
from its early beginnings in 2000, activity had its climax
around 2002-2003 and then decreased steadily. Although
the project is actively maintained and still brings regular
releases the list of new features is decreasing with the
years. It is still hosted by the Apache Foundation, which
is known to have a high interest in software product and
process quality.

B. Structure of the data set
The complete data set is a consistent mix of different

levels of information corresponding to the application,
files and functions artefact types. Hence three different
subsets are provided. The application data set has 159
measures composed of 66 metrics and 93 rules extracted
from source code, configuration management and commu-
nication channels. Each record is an application version.
The files data set has 123 measures composed of 30
metrics and 93 rules extracted from source code and con-
figuration management. Each record is a Java file with the
.java extension. The functions data set has 117 measures
composed of 24 metrics and 93 rules extracted from source
code only, of which each record is a java function with its
arguments.

TABLE II: Sizing information for the CSV data sets.
App File Func

Size of flat files 312KB 232MB 2.4GB
Size of compressed files 68KB 12MB 89MB
Number of records 636 654 696 6 887 473

Each data set is composed of 636 exports of the Ant
project, extracted on the Monday of every week since the
beginning of the project until end of July, 2012. The format
of the files is plain text CSV and the separator used for
all data sets is ! (exclamation mark). Some key sizing
information is provided in table II.

C. Retrieval process
Data is retrieved from the project’s official repositories:
• Source code is extracted from the Subversion repos-

itory’s trunk at specific dates. Only files with a
.java extension have been analysed. Code metrics
are computed using SQuORE [3], and rules violations
are extracted from SQuORE, Checkstyle [4], [5] and
PMD [6], [7].

• Configuration management metadata is extracted
from Subversion’s svn log -v command and parsed
with custom scripts.

• Communication measures are computed from the
mailing lists’ archives in mbox format.

To ensure consistency between all artefact measures we
rely on SQuORE, a professional tool for software project
quality evaluation and business intelligence [3]. It features
a parser, which builds a tree of artefacts (application, files,
functions) and an engine that associates measures to each
node and aggregates data to upper levels. Users can write
custom parsers to analyse specific types of data sources,
which we did for the analysis of configuration management
and communication channels.

III. Metrics

The measures presented here are intended as real-world
data: although they have been cross-checked for errors
or inconsistencies, no transformation has been applied
on values. As an example, the evolution of line counting
metrics shows a huge peak around the beginning of 2002
due to some configuration management large-scale actions
which impacted many metrics. We deliberately kept raw
data because this was actually the state of the subversion
repository at that time.

Migrations between tools often make it difficult to rely
on a continuous measure of the characteristics. Some
information of the former repository may not have been
included or wrongly migrated, and the meaning of meta-
data may have heavily differed depending on the tool. An
example of such issues lies in erroneous dates of migrated
code in the new configuration management system.

Another point is there may be a huge difference between
the source code of an official release and the actual config-
uration management state at the release time. The build
and release process often extracts and packages source
code, skipping some files and delivering other (potentially
dynamically generated) information and artefacts. As an
example, the common metrics shown in table I for Ant
official releases cannot be confirmed by the repository
information available in the data set.

The set of metrics for each artefact type is shown in
tables III, IV and V. Some metrics are available only
at specific levels – e.g. distinct number of operands in a
function, while others are available on more than one level
– e.g. SCM Commits. Please note that the relationship
between levels varies: summing line counts on files gives
the line count at the application level, which is not true
for commits – since a commit often includes several files.
Practioners should check ecological inference[8] to reduce
bias when playing with the different levels of information.

A. Source code
Most source code measures are borrowed from the liter-

ature: artefact- and line-counting metrics have their usual

definition1, vg is from McCabe [9], dopd, dopt, topd,
topt are from Halstead [10]. ladd, lmod and lrem are
differential measures that respectively count the number
of lines added, modified and removed since last analysis.

Some of the metrics considered have computational
relationships among themselves. They are:

sloc = eloc + brac
lc = sloc + blan + cloc − mloc
lc = (eloc + brac) + blan + cloc − mloc

comr = ((cloc + mloc) × 100)/(eloc + cloc))

TABLE III: Source code metrics.
Metric name Mnemo App File Func
Blank lines blan X X X
Braces lines brac X X X
Control flow tokens cft X X X
Number of classes clas X X X
Comment lines of code cloc X X X
Comment rate comr X X X
Depth of Inheritance Tree ditm X
Distinct operands dopd X
Distinct operators dopt X
Effective lines of code eloc X X X
Number of files file X
Number of functions func X X
Lines added ladd X X X
Line count lc X X X
Lines modified lmod X X X
Lines removed lrem X X X
Mixed lines of code mloc X X X
Non Conformities ncc X X X
Maximum nesting nest X
Number of parameters nop X
Number of paths npat X
Acquired practices rokr X X X
Source lines of code sloc X X X
Number of statements stat X X X
Number of operands topd X
Number of operators topt X
Cyclomatic number vg X X X

B. Configuration management
All modern configuration management tools propose a

log retrieval facility to dig into a file history. In order to
work on several different projects, we needed to go one
step further and define a limited set of basic information
that we could extract from all major tools (e.g. CVS, Sub-
version, Git): number of commits, committers, and files
committed. The scm fixes measure counts the number
of commits that have one of fix, issue, problem or error
keywords in their associated commit message.

Measures are proposed in four time frames, by counting
events that occured during last week (scm * 1w), dur-
ing last month (scm * 1m), during last three months
(scm * 3m), and since the beginning of the project
(scm * total). These enable users to better grasp re-
cent variations in the measures, and give different perspec-

1A complete definition of the metrics is available on the Maisqual
web site: maisqual.squoring.com/wiki/index.php/Data Sets.

TABLE IV: SCM metrics.
Metric name Mnemo App File Func
SCM Fixes scm fixes X X
SCM Commits scm commits X X
SCM Committers scm committers X X
SCM Committed
files

scm commit files X

tives on its evolution. Configuration management metrics
are listed in table IV.

C. Communication channels

Open-source projects usually have at least two mailing
lists: one for technical questions about the product’s devel-
opment itself (i.e. the developer mailing list) and another
one for questions relative to the product’s usage (i.e. the
user mailing list). Historical data was extracted from old
mbox archives, all of which are available on the project
web site.

TABLE V: Communication metrics.

Metric name A
pp

Fi
le

Fu
nc

Number of authors in developer ML X
Median response time in developer ML X
Volume of mails in developer ML X
Number of threads in developer ML X
Number of authors in user ML X
Median response time in user ML X
Volume of mails in user ML X
Number of threads in user ML X

Available measures are the number of distinct authors,
the volume of mails exchanged on the mailing list, the
number of different threads, and the median time be-
tween a question and its first answer on the considered
time frame. These measures are proposed in three time
frames spanning on last week (com * 1w), last month
(com * 1m) and the last three months (com * 3m)
of activity. Communication metrics are listed in table V.

IV. Rules

Rules are associated to coding conventions and prac-
tices. They deliver substantial information on the local
customs in use in the project, and are usually linked
to specific characteristics of quality. In the data sets,
conformity to rules is displayed as a number of violations
of the rule (non-conformity count or ncc) for the given
artefact.

Many of these rules are linked to coding conven-
tions published by standardisation organisms like CERT
(Carnegie Mellon’s secure coding instance), which usually
give a ranking on the remediation cost and the severity of
the rule. There are also language-specific coding conven-
tions, as is the case with Sun’s coding conventions for the
Java programming language [11].

A. SQuORE rules
We identified 21 rules from SQuORE 2013-C, targeting

the most common and harmful coding errors. Examples of
checked rules include fall-through in switch cases, missing
default, backwards goto, and assignment in condition. The
following families of rules are defined: fault tolerance (2
rules), analysability (7 rules), maturity (1 rule), stability
(10 rules), changeability (12 rules) and testability (13
rules). The full rule set is described on the Maisqual
project wiki2.

B. Checkstyle rules
We identified 39 rules from the Checkstyle 5.6 rule set,

corresponding to useful practices generally well adopted
by the community. The quality attributes impacted by
these rules are: analysability (23 rules), reusability (11
rules), reliability (5 rules), efficiency (5 rules), testability
(3 rules), robustness (2 rules) and portability (1 rule). All
rules are described on the Checkstyle web site3.

C. PMD rules
We selected 58 rules from the PMD 5.0.5 rule set. These

are related to the following quality attributes: analysabil-
ity (26 rules), maturity (31 rules), testability (13 rules),
changeability (5 rules), and efficiency (5 rules). The full
rule set is documented on the PMD web site4.

V. Possible uses of the data set
The introduction of data mining techniques in software

engineering is quite recent, and there is still a vast field
of possibilities to explore. Data may be analysed from an
evolutional or static perspective by considering either a
time range or a single version. Since the different levels
of data (application, file and function) are altogether
consistent, one may as well consider studying relationships
between them, or even the evolution of these relationships
with time.

Communication and configuration management metrics
give precious insights into the community’s activity and
process-related behaviour in development. Time-related
measures (ladd, lmod, lrem, * 1w, * 1m, * 3m) are
useful to grasp the dynamics of the project’s evolution.
Since rule violations are representative of coding practices,
one may consider the links between the development prac-
tices and their impact on attributes of software.

The Maisqual project itself investigates the application
of statistical techniques to software engineering data and
relies on this data set series. Examples of usages are
provided on the Maisqual web site, including evolution
of metrics with time (e.g. time series analysis), analysis
of coding rule violations, and basic exploration of a single
version of the project (e.g. clustering of artefacts, principal
components analysis).

2See http://maisqual.squoring.com/wiki/index.php/Rules.
3See http://checkstyle.sourceforge.net/config.html.
4See http://pmd.sourceforge.net/pmd-5.0.5/rules/.

We recommend the use of literate analysis tools like
Sweave [12] and Knitr [13], which allow practitioners
to embed R code chunks into LATEX documents. These
dynamic documents can then be safely applied to many
sets of data with a similar structure to easily reproduce
results of an analysis on a large amount of data. Another
added value of literate data analysis is to situate results
in a semantic context, thus helping practitioners and end-
users to understand both the computation and its results.

VI. Summary and future work
The contribution of the data set presented here is

twofold: firstly the long time range (12 years) spans from
the very beginning of the project to an apogee of activity
and to a stable state of maturity. Secondly, the intro-
duction of unusal metrics (rule violations, configuration
management, mailing lists) at different levels opens new
perspectives on the evolution of software, the dynamics of
its community, the coding and configuration management
practices.

Next versions of this data set will include new metrics,
gathered on new sources (e.g. bug tracking system), with
new data types (e.g. boolean, categorical) to foster usage
of different algorithms working on non-numerical data.
New projects will also be added from the open-source
community (GCC, JMeter).

References
[1] N. Fenton, “Software Measurement: a Necessary Scientific Ba-

sis,” IEEE Transactions on Software Engineering, vol. 20, no. 3,
pp. 199–206, Mar. 1994.

[2] C. Kaner and W. P. Bond, “Software engineering metrics: What
do they measure and how do we know?” in 10th International
Software Metrics Symposium, METRICS 2004, 2004, pp. 1–12.

[3] B. Baldassari, “SQuORE: A new approach to software project
quality measurement,” in International Conference on Software
& Systems Engineering and their Applications, Paris, France,
2012.

[4] P. Louridas, “Static Code Analysis,” IEEE Software, vol. 23,
no. 4, pp. 58–61, 2006.

[5] O. Burn, “Checkstyle,” 2001. [Online]. Available: http://
checkstyle.sf.net

[6] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and
J. Penix, “Using static analysis to find bugs,” IEEE Software,
vol. 25, no. 5, pp. 22–29, 2008.

[7] D. Dixon-Peugh, “PMD,” 2003. [Online]. Available: http:
//pmd.sf.net

[8] D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in
empirical software engineering,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, Nov. 2011, pp. 362–371.

[9] T. McCabe, “A complexity measure,” Software Engineering,
IEEE Transactions on, no. 4, pp. 308–320, 1976.

[10] M. H. Halstead., Elements of Software Science. Elsevier Science
Inc., 1977.

[11] Sun, “Code Conventions for the Java Programming Language,”
Tech. Rep., 1999.

[12] Friedrich Leisch, “Sweave. Dynamic generation of statistical
reports using literate data analysis.” SFB Adaptive Information
Systems and Modelling in Economics and Management Science,
WU Vienna University of Economics and Business, Vienna,
Tech. Rep. 69, 2002.

[13] Y. Xie, “Knitr: A general-purpose package for dynamic report
generation in R,” Tech. Rep., 2013.

Appendix B

Data sets

B.1 Apache Ant

The following table shows the releases considered for the Apache Ant project, and their
date of publication.

Date Version SLOC Files Functions
1.1 2000-07-18 1.5.4 2003-08-12 1.7.1 2008-06-27
1.2 2000-10-24 1.6.0 2003-12-18 1.8.0 2010-02-08
1.3 2001-03-02 1.6.1 2004-02-12 1.8.1 2010-05-07
1.4 2001-09-03 1.6.2 2004-07-16 1.8.2 2020-12-27
1.5.0 2002-07-15 1.6.3 2005-04-28 1.8.3 2012-02-29
1.5.1 2002-10-03 1.6.4 2005-05-19 1.8.4 2012-05-23
1.5.2 2003-03-03 1.6.5 2005-06-02
1.5.3 2003-04-09 1.7.0 2006-12-19

B.2 Apache httpd

The following table shows the releases considered for the Apache httpd project, and their
date of publication.

Version Date Version Date Version Date
2.0.35 2002-04-05 2.0.46 2003-05-28 2.0.54 2005-04-11
2.0.36 2002-05-01 2.0.47 2003-07-09 2.0.55 2005-10-10
2.0.39 2002-06-18 2.0.48 2003-10-24 2.0.58 2006-04-24
2.0.40 2002-08-09 2.0.49 2004-03-18 2.0.59 2006-07-27
2.0.42 2002-09-19 2.0.50 2004-06-29 2.0.61 2007-09-04
2.0.43 2002-10-03 2.0.51 2004-09-15 2.0.63 2008-12-26
2.0.44 2003-01-18 2.0.52 2004-09-23 2.0.64 2010-10-14
2.0.45 2003-03-31 2.0.53 2005-02-05 2.0.65 2013-06-28

255

Version Date Version Date Version Date
2.2.0 2005-11-29 2.2.10 2008-10-07 2.2.17 2010-10-14
2.2.2 2006-04-22 2.2.11 2008-12-06 2.2.18 2011-05-08
2.2.3 2006-07-27 2.2.12 2009-07-2 2.2.19 2011-05-20
2.2.4 2007-01-06 2.2.13 2009-08-06 2.2.20 2011-08-30
2.2.6 2007-09-04 2.2.14 2009-09-24 2.2.21 2011-09-09
2.2.8 2008-01-10 2.2.15 2010-03-02 2.2.22 2012-01-25
2.2.9 2008-06-10 2.2.16 2010-07-21

B.3 Apache JMeter

The following table shows the releases considered for the Apache JMeter project, and
their date of publication.

Version Date Version Date
1.8.1 2003-02-14 2.3.2 2008-06-10
1.9.1 2003-08-07 2.3.3 2009-05-24
2.0.0 2004-04-04 2.3.4 2009-06-21
2.0.1 2004-05-20 2.4 2010-07-14
2.0.2 2004-11-07 2.5 2011-08-17
2.0.3 2005-03-22 2.5.1 2011-10-03
2.1.0 2005-08-19 2.6 2012-02-01
2.1.1 2005-10-02 2.7 2012-05-27
2.2 2006-06-13 2.8 2012-10-06
2.3 2007-07-10 2.9 2013-01-28
2.3.1 2007-11-28 2.10 2013-10-21

B.4 Apache Subversion

The following table shows the releases considered for the Apache Subversion project, and
their date of publication.

256

Version Date Version Date Version Date
1.0.0 2004-02-23 1.4.4 2007-05-29 1.6.16 2011-03-03
1.0.1 2004-03-12 1.4.5 2007-08-18 1.6.17 2011-06-02
1.0.2 2004-04-19 1.4.6 2007-12-17 1.6.18 2012-03-23
1.0.3 2004-05-19 1.5.0 2008-06-19 1.6.19 2012-09-12
1.0.4 2004-05-22 1.5.1 2008-07-24 1.6.20 2012-12-27
1.0.5 2004-06-10 1.5.2 2008-08-28 1.6.21 2013-03-29
1.0.6 2004-07-20 1.5.3 2008-10-09 1.6.23 2013-05-23
1.0.7 2004-09-18 1.5.4 2008-10-22 1.7.0 2011-09-09
1.0.8 2004-09-23 1.5.5 2008-12-19 1.7.1 2011-10-20
1.0.9 2004-11-14 1.5.6 2009-02-25 1.7.2 2011-11-29
1.1.0 2004-09-30 1.5.7 2009-08-06 1.7.3 2012-02-10
1.1.1 2004-11-23 1.5.9 2010-12-02 1.7.4 2012-03-02
1.1.2 2004-12-21 1.6.0 2009-03-19 1.7.5 2012-05-10
1.1.3 2005-01-15 1.6.1 2009-04-09 1.7.6 2012-08-28
1.1.4 2005-04-02 1.6.2 2009-05-07 1.7.7 2012-10-04
1.2.0 2005-05-23 1.6.3 2009-06-18 1.7.8 2012-12-10
1.2.1 2005-07-06 1.6.4 2009-08-06 1.7.9 2013-03-29
1.2.3 2005-08-25 1.6.5 2009-08-20 1.7.10 2013-05-23
1.3.0 2006-01-14 1.6.6 2009-10-22 1.8.0 2013-06-13
1.3.1 2006-04-03 1.6.9 2010-01-20 1.8.1 2013-07-24
1.3.2 2006-05-23 1.6.11 2010-04-15 1.8.3 2013-08-30
1.4.0 2006-08-22 1.6.12 2010-06-18 1.8.4 2013-10-22
1.4.2 2006-11-02 1.6.13 2010-09-29 1.8.5 2013-11-25
1.4.3 2007-01-17 1.6.15 2010-11-23

B.5 Versions data sets

The following table lists the projects’ versions generated for the data sets. OO met-
rics are clas (number of classes defined in the artefact) and ditm (Depth of Inher-
itance Tree). Diff metrics are ladd, lmod, lrem (Number of lines added, modi-
fied and removed since the last analysis. Time metrics for SCM are scm_*_1w,
scm_*_1m, and scm_*_3m. Total metrics for SCM are scm_commits_total,
scm_committers_total, scm_commits_files_total and scm_fixes_total.
Time metrics for Comm. are com_*_1w, com_*_1m, and com_*_3m.

257

Code SCM Comm. Rules

Project Lang. Version C
om

m
on

O
O

D
iff

T
im

e

To
ta
l

T
im

e

Sq
uo

r
e

P
M
D

C
he
ck
st
yl
e

Epsilon Java 2013-03-05 X X X X X X
Epsilon Java 2013-09-05 X X X X X X

Subversion C 2010-01-04 X X X
Subversion C 2010-07-05 X X X

Topcased Gendoc Java 4.0.0 X X X X X X
Topcased Gendoc Java 4.2.0 X X X X X X
Topcased Gendoc Java 4.3.0 X X X X X X
Topcased Gendoc Java 5.0.0 X X X X X X
Topcased MM Java 1.0.0 X X X X X X
Topcased MM Java 2.0.0 X X X X X X
Topcased MM Java 4.0.0 X X X X X X
Topcased MM Java 4.2.0 X X X X X X
Topcased gPM Java 1.2.7 X X X X X X
Topcased gPM Java 1.3.0 X X X X X X

258

Appendix C

Knitr documents

C.1 Squore Lab Outliers

This Squore Lab knitr document was written to investigate various statistical methods
for outliers detection and their application to todo lists. See section 8.3.1 for more
information. We first show an extract of the knitr document featuring graphs and
tables of boxplots outliers for the combination of metrics. Some pages extracted from the
generated document follow.

\paragraph{3 metrics combination}

In the following plot, outliers on SLOC are plotted in dark green, outliers on VG are plotted in blue,
and outliers on NCC are plotted in purple. Intersection between all three variables is plotted in light
red (red3) and union is plotted in dark red (red4).

<<file_out_box_3, results=’hide’>>=
outs_sloc <- which(project_data[,c("SLOC")] %in% boxplot.stats(project_data[,c("SLOC")])$out)
outs_vg <- which(project_data[,c("VG")] %in% boxplot.stats(project_data[,c("VG")])$out)
outs_ncc <- which(project_data[,c("NCC")] %in% boxplot.stats(project_data[,c("NCC")])$out)

outs_i <- intersect(outs_sloc, outs_vg)
outs_i <- intersect(outs_i, outs_ncc)
outs_u <- union(outs_sloc, outs_vg)
outs_u <- union(outs_sloc, outs_ncc)

pchs <- rep(".", nrow(project_data))
pchs[outs_sloc] <- "o"
pchs[outs_vg] <- "o"
pchs[outs_ncc] <- "o"
cols <- rep("black", nrow(project_data))
cols[outs_sloc] <- "darkgreen"
cols[outs_vg] <- "blue"
cols[outs_ncc] <- "purple"
cols[outs_i] <- "red1"
cols[outs_u] <- "red4"

jpeg(file="figures/file_outliers_box_m3.jpg", width=2000, height=2000,
quality=100, pointsize=12, res=100)

pairs(project_data[,c("COMR", "SLOC", "VG", "NCC")], pch=pchs, col=cols)
dev.off()
@

\begin{figure}[hbt]

259

\begin{center}
\includegraphics[width=\linewidth]{file_outliers_box_m3.jpg}
\end{center}
\caption{3-metrics combination}
\label{fig:file_outliers_box_m3}
\end{figure}

Table \ref{tab:file_outliers_box_sloc_vg_ncc} gives some of the artefacts that are
Outliers both on SLOC and NCC:

\vspace{10pt}
\begin{table}[hbt]
\begin{center}
<<file_outliers_box_table_sloc_vg_ncc, results=’asis’>>=

a <- project[outs_i, 3]
a <- as.data.frame(a)
names(a) <- c("File name")

print(xtable(a, align="|r|l|"), tabular.environment="longtable",
floating=FALSE, size="\\scriptsize"

)

rm(a)
@
\end{center}
\caption{Artefacts with SLOC, VG and NCC outliers -- \texttt{boxplot.stats} method}
\label{tab:file_outliers_box_sloc_ncc}
\end{table}
\vspace{10pt}

The following extracts show:

 The list of figures and tables generated in the document.
 The quick statistics summary at the beginning of the analysis.
 Scatterplots of some metrics to visually grasp their shape.
 The table of metrics sorted according to their number of outliering values.
 The output of a multivariate hierarchical clustering on file artefacts using various

linkage methods, with a dendogram and 2-D and 3-D plots.
 Another dendogram showing multivariate hierarchical clustering with the Manhattan

distance and single linkage.

260

List of Figures

1 Data retrieval process . 3
2 Univariate outliers detection with boxplot.stats 9
3 Pairwise univariate outliers combination: SLOC and VG 10
4 Pairwise univariate outliers combination: SLOC and NCC 11
5 3-metrics combination . 14
6 Multivariate outliers detection with boxplot.stats 15
7 Number of outliers with boxplot.stats 17
8 Univariate outliers detection with LOF 32
9 Univariate outliers detection with LOF 33
10 Outliers detection: LOF . 34
11 Multivariate LOF . 35
12 Euclidean distance, Ward method 36
13 Euclidean distance, Single method 37
14 Euclidean distance, Median method 38
15 Euclidean distance, average method 39
16 Euclidean distance, centroid method 40
17 Euclidean distance, McQuitty method 41
18 Euclidean distance, complete method 42
19 Manhattan distance, Ward method 50
20 Manhattan distance, Single method 51
21 Manhattan distance, Median method 52
22 Manhattan distance, average method 53
23 Manhattan distance, centroid method 54
24 Manhattan distance, McQuitty method 55
25 Manhattan distance, complete method 56

List of Tables

1 File metrics exploration . 8
3 Artefacts with SLOC and VG outliers – boxplot.stats method 12
5 Artefacts with SLOC and NCC outliers – boxplot.stats method 13
7 Artefacts with SLOC, VG and NCC outliers – boxplot.stats

method . 16
*Todo list

2

Metric Min Max Mean Var Modes NAs
BLAN 0 2844 53.612 15598.159 344 0
CFT 0 5825 164.872 526632.995 402 0
CLAS 0 200 2.467 30.326 46 0
CLOC 0 3808 122.48 54217.909 548 0
CLOR 0 100 15.915 1249.654 238 0
COMR 0 100 46.453 422.383 2162 0
ELOC 0 8530 269.594 678703.431 677 0
FUNC 0 747 21.856 3983.681 199 0
GOTO 0 0 0 0 1 0
LC 6 12382 529.108 1742786.111 993 0
NCC 0 9992 263.137 469418.279 760 0
NCC ANA 0 1589 15.294 4813.389 142 0
NCC CHAN 0 1529 24.439 4409.003 226 0
NCC REL 0 732 23.57 4200.059 212 0
NCC REUS 0 733 28.175 4502.406 240 0
NCC STAB 0 399 2.09 109.548 57 0
NCC TEST 0 2608 16.584 7171.917 141 0
NEST 0 0 0 0 1 0
NOP 0 0 0 0 1 0
PATH 0 0 0 0 1 0
RKO 0 44 11.511 43.458 37 0
RKO ANA 0 3 0.842 0.62 4 0
RKO CHAN 0 8 2.129 3.317 9 0
RKO REL 0 4 1.208 0.55 5 0
RKO REUS 0 8 2.312 0.773 9 0
RKO STAB 0 6 0.373 0.535 7 0
RKO TEST 0 8 2.1 4.913 9 0
ROKR 69.231 100 91.915 20.946 52 0
ROKR ANA 40 100 83.156 247.948 4 0
ROKR CHAN 38.462 100 83.425 194.418 11 0
ROKR REL 84.615 100 95.353 8.132 5 0
ROKR REUS 80 100 94.219 4.83 9 0
ROKR STAB 33.333 100 95.852 66.09 7 0
ROKR TEST 50 100 86.723 190.521 10 0
SCM COMMITS 1M 0 5 0.141 0.216 6 0
SCM COMMITS 1W 0 3 0.065 0.074 4 0
SCM COMMITS 3M 0 14 1.588 2.273 13 0
SCM COMMITS TOTAL 0 62 8.153 29.418 23 0
SCM COMMITTERS 1M 0 3 0.107 0.1 4 0
SCM COMMITTERS 1W 0 2 0.06 0.06 3 0
SCM COMMITTERS 3M 0 4 1.185 0.506 5 0
SCM COMMITTERS TOTAL 0 6 2.156 0.896 7 0
SCM FIXES 1M 0 5 0.125 0.192 6 0
SCM FIXES 1W 0 3 0.054 0.056 4 0
SCM FIXES 3M 0 13 0.632 1.794 11 0
SCM FIXES TOTAL 0 52 3.428 18.286 17 0
SLOC 0 10093 355.05 1375443.729 753 0
STAT 0 8763 263.778 1244857.345 526 0
VG 0 2925 96.095 134581.42 345 0

Table 1: File metrics exploration

8

3 metrics combination In the following plot, outliers on SLOC are plotted
in dark green, outliers on VG are plotted in blue, and outliers on NCC are
plotted in purple. Intersection between all three variables is plotted in light red
(red3) and union is plotted in dark red (red4).

Figure 5: 3-metrics combination

Table ?? gives some of the artefacts that are outliers both on SLOC and
NCC:

All-metrics outliers combination The global union and intersection of out-
liers collected on all individual metrics are plotted in figure 6. The union (2718
elements) is plotted in dark green crosses, while intersection (0 elements) is plot-
ted with red circles. It is a possibility that intersection is empty, considering

14

2.3 Univariate sorting

The following table 7 gives the number of outliers for each variable with the
boxplot method:

Count of outliers Percent of whole set
NCC STAB 1059 5.41

VG 942 4.81
CLOR 933 4.76
STAT 849 4.33

NCC CHAN 845 4.31
CFT 833 4.25

SLOC 794 4.05
NCC 736 3.76

ELOC 731 3.73
NCC ANA 718 3.67

BLAN 710 3.62
FUNC 708 3.61

NCC REUS 639 3.26
NCC REL 604 3.08

LC 600 3.06
SCM COMMITS 1M 523 2.67

SCM COMMITTERS 1M 523 2.67
RKO STAB 509 2.60

ROKR STAB 509 2.60
CLOC 497 2.54

NCC TEST 496 2.53
CLAS 490 2.50

ROKR CHAN 487 2.49
SCM FIXES 1M 467 2.38

SCM COMMITS 3M 440 2.25
SCM FIXES 3M 352 1.80

SCM FIXES TOTAL 333 1.70
SCM COMMITTERS TOTAL 298 1.52

SCM COMMITS 1W 291 1.49
SCM COMMITTERS 1W 291 1.49

SCM FIXES 1W 256 1.31
RKO REUS 231 1.18

ROKR REUS 231 1.18
RKO TEST 204 1.04

ROKR TEST 204 1.04
RKO ANA 58 0.30

ROKR ANA 58 0.30
SCM COMMITS TOTAL 52 0.27

RKO CHAN 39 0.20
RKO 16 0.08

ROKR 16 0.08
RKO REL 5 0.03

ROKR REL 5 0.03
SCM COMMITTERS 3M 5 0.03

COMR 1 0.01

Figure 7: Number of outliers with boxplot.stats

Next table shows for a few files the metrics that make them outliers.

17

2.5 Hierarchical clustering – Euclidean distance

Hierarchical clustering relies on distance to find similarities between points and
to identify clusters. In figure 25 the euclidean distance is used to find similarities.

Figure 12: Euclidean distance, Ward method

Number of items in each cluster:

Method used Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Total
Ward 2260 1579 864 83 139 22 65 5012
Average 4896 1 81 23 1 2 8 5012
Single 4905 1 80 22 1 1 2 5012
Complete 4697 81 182 23 1 2 26 5012
McQuitty 4879 1 80 23 1 2 26 5012
Median 4905 1 80 22 1 1 2 5012
Centroid 4896 1 81 23 1 2 8 5012

36

Figure 20: Manhattan distance, Single method

51

C.2 Squore Lab Clustering

In the Clustering Squore Lab we needed to investigate clustering methods for automatic
categorisation of artefacts. To achieve this we first wrote a generic knitr document that
applied various clustering methods to file artefacts, trying to find natural clusters in
measures. This generic document was then refined in a more specific version to provide
consultants with a small and fast report to use during the calibration phase of a quality
model.

In the document presented below, each metric from the data set is individually treated
to identify the natural threshold values that can be used to configure the Squore quality
models. This document is entirely automated and relies on some heavy computations to
mix R commands with LATEXformatting directives. An extract of the Knitr source code is
provided below.

ranges <- as.data.frame(array(c(1,1,2,2,3,3,4,4,5,5,6,6,7,7), dim=c(2,7)))
for (j in 1:7) {

myranges <- range(project_data[project_data_kmeans_7$cluster == j,i])
ranges[1,j] <- myranges[1]
ranges[2,j] <- myranges[2]

}
ranges <- ranges[,order(ranges[1,])]
names(ranges) <- c("A", "B", "C", "D", "E", "F", "G")

print(xtable(ranges, digits=0),
include.rownames=FALSE,
floating=FALSE)

cat(’\\end{center}
\\vspace{5pt}

The following scale is proposed:

\\begin{verbatim}
<Scale scaleId="SCALE_NAME">

<ScaleLevel levelId="LEVELA" bounds="[0;’)
cat(ranges[2,1])
cat(’]" rank="0" />
<ScaleLevel levelId="LEVELB" bounds="]’)
cat(ranges[2,1])

The following extracted pages show:

 The table of contents with all metrics for which a custom scale is proposed.
 Three pages for the comr, vg, scm_commits metrics, with the number of artefacts

in each clusters, the scale proposed in the format used by Squore for its configuration
files, and a plot of the repartition of artefacts.

267

Calibration Wizard

Flavien Huynh, Boris Baldassari

January 20, 2014

Contents

List of Figures 1

List of Tables 2

1 Introduction 3
1.1 Purpose of this document . 3
1.2 Reading data . 3
1.3 Metrics exploration . 3

2 k-means clustering 3
2.1 BLAN . 5
2.2 CFT . 7
2.3 CLAS . 9
2.4 CLOC . 11
2.5 COMR . 13
2.6 ELOC . 15
2.7 FUNC . 17
2.8 LC . 19
2.9 MLOC . 21
2.10 NCC . 23
2.11 ROKR . 25
2.12 SLOC . 27
2.13 STAT . 29
2.14 VG . 31
2.15 SCM COMMITS TOTAL . 33
2.16 SCM COMMITTERS TOTAL 35
2.17 SCM FIXES TOTAL . 37

List of Figures

1

2.5 COMR

Automatic clustering proposes the following repartition of artefacts:

1 2 3 4 5 6 7
138 126 234 247 200 141 90

The associated ranges are the following:

A B C D E F G
5 24 36 46 55 65 77

24 36 45 55 65 76 93

The following scale is proposed:

<Scale scaleId="SCALE_NAME">

<ScaleLevel levelId="LEVELA" bounds="[0;24.03]" rank="0" />

<ScaleLevel levelId="LEVELB" bounds="]24.03;35.94]" rank="1" />

<ScaleLevel levelId="LEVELC" bounds="]35.94;45.45]" rank="2" />

<ScaleLevel levelId="LEVELD" bounds="]45.45;55.16]" rank="4" />

<ScaleLevel levelId="LEVELE" bounds="]55.16;65]" rank="8" />

<ScaleLevel levelId="LEVELF" bounds="]65;76.47]" rank="16" />

<ScaleLevel levelId="LEVELG" bounds="]76.47;[" rank="32" />

</Scale>

9

2.14 VG

Automatic clustering proposes the following repartition of artefacts:

1 2 3 4 5 6 7
92 518 172 9 47 25 313

The associated ranges are the following:

A B C D E F G
0 9 22 42 76 126 223
8 21 41 73 119 186 379

The following scale is proposed:

<Scale scaleId="SCALE_NAME">

<ScaleLevel levelId="LEVELA" bounds="[0;8]" rank="0" />

<ScaleLevel levelId="LEVELB" bounds="]8;21]" rank="1" />

<ScaleLevel levelId="LEVELC" bounds="]21;41]" rank="2" />

<ScaleLevel levelId="LEVELD" bounds="]41;73]" rank="4" />

<ScaleLevel levelId="LEVELE" bounds="]73;119]" rank="8" />

<ScaleLevel levelId="LEVELF" bounds="]119;186]" rank="16" />

<ScaleLevel levelId="LEVELG" bounds="]186;[" rank="32" />

</Scale>

18

2.15 SCM COMMITS TOTAL

Automatic clustering proposes the following repartition of artefacts:

1 2 3 4 5 6 7
279 186 5 73 573 46 14

The associated ranges are the following:

A B C D E F G
0 12 28 48 78 124 212

10 26 46 76 120 186 302

The following scale is proposed:

<Scale scaleId="SCALE_NAME">

<ScaleLevel levelId="LEVELA" bounds="[0;10]" rank="0" />

<ScaleLevel levelId="LEVELB" bounds="]10;26]" rank="1" />

<ScaleLevel levelId="LEVELC" bounds="]26;46]" rank="2" />

<ScaleLevel levelId="LEVELD" bounds="]46;76]" rank="4" />

<ScaleLevel levelId="LEVELE" bounds="]76;120]" rank="8" />

<ScaleLevel levelId="LEVELF" bounds="]120;186]" rank="16" />

<ScaleLevel levelId="LEVELG" bounds="]186;[" rank="32" />

</Scale>

19

C.3 Squore Lab Correlations

In the Correlations Squore Lab regression methods are applied to various sets of metrics
and rules to unveil inter-relationships between them. See chapter 10 page 167 for more
information on this work.

The following pages have been extracted from the JMeter analysis document:

 The table of the paiwise linear regression on metrics.
 The table of the pairwise polynomial regression on metrics.
 Three pages of results for the pairwise linear regression of metrics against rules; they

represent respectively rules from Squore, PMD and Checkstyle.
 The table of the pairwise polynomial regression of metrics against rules (Squore

only).

272

BLAN

BRAC

CFT

CLAS

CLOC

COMR

ELOC

FUNC

LC

MLOC

NCC

ROKR

SCMCOMMITSTOTAL

SCMCOMMITTERSTOTAL

SCMFIXESTOTAL

SLOC

STAT

VG

B
L
A
N

1
.0

0
0
.4

8
9

0
.5

7
3

0
.4

5
9

0
.7

3
6

0
.6

8
5

0
.7

7
6

0
.3

6
6

0
.6

8
1

0
.4

2
7

0
.7

2
6

0
.6

8
9

0
.6

6
4

B
R
A
C

0
.4

9
1

0
.7

6
0
.4

8
2

0
.6

5
8

0
.6

5
3

0
.7

6
8

0
.5

5
6

0
.5

9
6

0
.7

7
1

0
.6

0
2

0
.7

8
2

C
F
T

0
.5

7
0
.7

6
1

0
.5

5
0
.7

5
7

0
.6

0
8

0
.8

1
4

0
.3

7
6

0
.6

3
5

0
.6

2
9

0
.2

0
6

0
.8

0
8

0
.7

5
4

0
.9

2
4

C
L
A
S

1
C
L
O

C
0
.4

6
0
.4

8
2

0
.5

5
1

0
.4

5
5

0
.5

3
5

0
.7

1
7

0
.2

4
8

0
.4

3
5

0
.3

6
4

0
.4

9
1

0
.4

2
2

0
.5

8
2

C
O

M
R

1
0
.2

4
9

0
.3

1
3

0
.2

5
2

0
.2

2
4

E
L
O

C
0
.7

4
0
.6

5
8

0
.7

5
7

0
.4

5
5

0
.2

4
9

1
0
.6

2
0
.9

1
3

0
.3

9
6

0
.8

1
4

0
.5

9
6

0
.9

8
4

0
.9

5
9

0
.7

5
6

F
U
N
C

0
.6

9
0
.6

5
3

0
.6

0
8

0
.5

3
5

0
.6

2
1

0
.7

4
1

0
.2

2
2

0
.6

6
6

0
.4

5
3

0
.6

6
8

0
.5

3
8

0
.7

7
2

L
C

0
.7

8
0
.7

6
8

0
.8

1
4

0
.7

1
7

0
.9

1
3

0
.7

4
1

1
0
.3

4
5

0
.7

8
7

0
.6

1
6

0
.9

4
0
.8

6
4

0
.8

4
6

M
L
O

C
0
.3

7
0
.3

7
6

0
.2

4
8

0
.3

9
6

0
.2

2
2

0
.3

4
5

1
0
.3

1
6

0
.2

1
0
.3

6
7

0
.3

6
2

0
.3

3
1

N
C
C

0
.6

8
0
.5

5
6

0
.6

3
5

0
.4

3
5

0
.8

1
4

0
.6

6
6

0
.7

8
7

0
.3

1
6

1
0
.5

7
4

0
.8

0
6

0
.7

6
9

0
.7

0
4

R
O

K
R

0
.4

3
0
.5

9
6

0
.6

2
9

0
.3

6
4

0
.3

1
3

0
.5

9
6

0
.4

5
3

0
.6

1
6

0
.2

1
0
.5

7
4

1
0
.6

3
5

0
.5

5
3

0
.6

0
3

S
C
M

C
O

M
M

IT
S

T
O

T
A
L

1
0
.4

8
3

0
.8

0
1

S
C
M

C
O

M
M

IT
T
E
R
S

T
O

T
A
L

0
.4

8
3

1
0
.3

1
S
C
M

F
IX

E
S

T
O

T
A
L

0
.2

0
6

0
.8

0
1

0
.3

1
1

0
.2

0
1

S
L
O

C
0
.7

3
0
.7

7
1

0
.8

0
8

0
.4

9
1

0
.2

5
2

0
.9

8
4

0
.6

6
8

0
.9

4
0
.3

6
7

0
.8

0
6

0
.6

3
5

0
.2

0
1

1
0
.9

3
6

0
.8

1
2

S
T
A
T

0
.6

9
0
.6

0
2

0
.7

5
4

0
.4

2
2

0
.2

2
4

0
.9

5
9

0
.5

3
8

0
.8

6
4

0
.3

6
2

0
.7

6
9

0
.5

5
3

0
.9

3
6

1
0
.7

3
7

V
G

0
.6

6
0
.7

8
2

0
.9

2
4

0
.5

8
2

0
.7

5
6

0
.7

7
2

0
.8

4
6

0
.3

3
1

0
.7

0
4

0
.6

0
3

0
.8

1
2

0
.7

3
7

1

T
ab

le
3:

L
in

ea
r

re
gr

es
si

o
n

:
a
d

ju
st

ed
R

2
fo

r
fi

le
m

et
ri

cs
a
n

d
cl

u
st

er
in

g
o
f

re
su

lt
s.

8

BLAN

BRAC

CFT

CLAS

CLOC

COMR

ELOC

FUNC

LC

MLOC

NCC

ROKR

SCMCOMMITSTOTAL

SCMCOMMITTERSTOTAL

SCMFIXESTOTAL

SLOC

STAT

VG

B
L
A
N

1
.0

0
0
.5

2
5

0
.5

8
2

0
.1

7
7

0
.4

7
2

0
.1

5
3

0
.7

3
8

0
.6

8
8

0
.7

7
6

0
.3

8
3

0
.6

9
1

0
.4

2
9

0
.1

3
0
.0

4
0
.1

6
2

0
.7

2
7

0
.6

9
5

0
.6

6
6

B
R
A
C

0
.5

3
1

0
.7

6
8

0
.1

8
2

0
.4

8
8

0
.1

9
3

0
.6

6
8

0
.6

5
9

0
.7

6
8

0
.1

8
4

0
.5

8
0
.6

3
7

0
.1

7
8

0
.0

8
0
.2

0
1

0
.7

7
3

0
.6

2
6

0
.7

8
8

C
F
T

0
.6

1
0
.7

7
1

0
.1

4
9

0
.5

5
5

0
.1

5
3

0
.7

5
9

0
.6

1
1

0
.8

1
4

0
.3

7
8

0
.6

5
3

0
.6

7
8

0
.1

7
0
.0

5
0
.2

0
8

0
.8

0
8

0
.7

6
5

0
.9

2
4

C
L
A
S

0
.1

7
0
.1

6
0
.1

3
1

1
0
.0

8
6

0
.0

6
9

0
.1

8
7

0
.1

6
3

0
.1

8
2

0
.0

5
7

0
.1

4
3

0
.1

5
1

0
.0

4
7

0
.0

1
6

0
.0

5
5

0
.1

9
2

0
.1

6
2

0
.1

4
8

C
L
O

C
0
.4

9
0
.4

8
6

0
.5

5
0
.0

9
2

1
0
.0

2
8

0
.4

5
8

0
.5

4
2

0
.7

1
9

0
.2

5
2

0
.4

4
1

0
.4

0
1

0
.1

0
.0

2
1

0
.1

1
1

0
.4

9
1

0
.4

3
2

0
.5

8
3

C
O

M
R

0
.2

3
0
.3

0
.2

6
7

0
.0

7
1

0
.3

8
8

0
.3

0
6

0
.2

5
5

0
.0

2
9

0
.2

9
5

0
.4

4
6

0
.0

4
1

0
.0

1
7

0
.0

6
0
.3

9
8

0
.3

4
9

0
.2

7
9

E
L
O

C
0
.7

6
0
.6

8
0
.7

6
4

0
.1

9
7

0
.4

7
0
.2

6
6

1
0
.6

3
4

0
.9

1
3

0
.4

0
1

0
.8

2
4

0
.6

1
3

0
.1

5
1

0
.0

4
7

0
.1

9
1

0
.9

8
4

0
.9

6
1

0
.7

6
3

F
U
N
C

0
.7

1
0
.6

7
8

0
.6

2
2

0
.1

6
7

0
.5

3
5

0
.1

7
9

0
.6

3
5

1
0
.7

4
1

0
.2

3
2

0
.6

8
1

0
.4

5
5

0
.1

1
5

0
.0

4
2

0
.1

4
2

0
.6

7
7

0
.5

6
6

0
.7

7
6

L
C

0
.8

0
0
.7

8
2

0
.8

2
0
.1

9
5

0
.7

2
5

0
.1

5
4

0
.9

1
5

0
.7

4
4

1
0
.3

5
1

0
.8

0
.6

4
3

0
.1

6
4

0
.0

5
0
.1

9
6

0
.9

4
0
.8

7
1

0
.8

5
M

L
O

C
0
.3

7
0
.1

8
8

0
.3

9
6

0
.0

5
6

0
.2

5
2

0
.0

2
3

0
.3

9
9

0
.2

2
5

0
.3

5
2

1
0
.3

1
8

0
.2

2
8

0
.0

8
0
.0

1
9

0
.1

1
5

0
.3

7
3

0
.3

6
2

0
.3

4
4

N
C
C

0
.6

9
0
.5

7
6

0
.6

4
2

0
.1

4
6

0
.4

4
2

0
.1

9
6

0
.8

1
4

0
.6

6
8

0
.7

8
7

0
.3

1
7

1
0
.5

9
2

0
.1

0
5

0
.0

2
3

0
.1

2
8

0
.8

0
7

0
.7

7
0
.7

0
6

R
O

K
R

0
.5

3
0
.6

5
8

0
.6

9
0
.1

7
9

0
.3

8
8

0
.3

1
4

0
.6

6
4

0
.5

0
5

0
.6

6
2

0
.2

2
3

0
.6

7
1

0
.1

3
8

0
.0

3
6

0
.1

5
5

0
.6

9
2

0
.6

3
7

0
.6

6
3

S
C
M

C
O

M
M

IT
S

T
O

T
A
L

0
.1

5
0
.1

7
7

0
.1

7
8

0
.0

6
4

0
.1

2
1

0
.0

3
5

0
.1

6
0
.1

2
5

0
.1

7
0
.0

9
8

0
.1

2
5

0
.1

4
2

1
0
.5

7
5

0
.8

0
3

0
.1

7
0
.1

4
6

0
.1

6
2

S
C
M

C
O

M
M

IT
T
E
R
S

T
O

T
A
L

0
.0

2
0
.0

4
1

0
.0

2
1

0
.0

1
4

0
.0

2
3

0
.0

1
5

0
.0

1
4

0
.0

2
4

0
.0

1
3

0
.0

1
6

0
.5

6
1

1
0
.3

2
6

0
.0

1
9

0
.0

1
2

0
.0

1
9

S
C
M

F
IX

E
S

T
O

T
A
L

0
.1

9
0
.2

0
.2

1
3

0
.0

6
8

0
.1

3
2

0
.0

4
9

0
.1

9
7

0
.1

5
4

0
.2

0
.1

2
5

0
.1

4
7

0
.1

5
7

0
.8

0
4

0
.4

2
8

1
0
.2

0
7

0
.1

8
5

0
.1

9
7

S
L
O

C
0
.7

5
0
.7

8
6

0
.8

1
5

0
.2

0
6

0
.5

0
4

0
.2

6
6

0
.9

8
5

0
.6

8
1

0
.9

4
0
.3

7
2

0
.8

2
0
.6

5
8

0
.1

6
7

0
.0

5
6

0
.2

0
5

1
0
.9

4
1

0
.8

1
9

S
T
A
T

0
.7

0
0
.6

2
3

0
.7

5
9

0
.1

6
8

0
.4

3
6

0
.2

4
3

0
.9

6
0
.5

5
3

0
.8

6
4

0
.3

6
8

0
.7

7
6

0
.5

7
2

0
.1

3
2

0
.0

4
0
.1

7
1

0
.9

3
7

1
0
.7

4
4

V
G

0
.7

0
0
.7

9
8

0
.9

2
5

0
.1

6
0
.5

8
6

0
.1

6
3

0
.7

6
0
.7

7
2

0
.8

4
6

0
.3

3
7

0
.7

1
5

0
.6

3
3

0
.1

5
6

0
.0

5
0
.1

9
1

0
.8

1
2

0
.7

5
2

1

T
ab

le
7:

P
ol

y
n

om
ia

l
re

g
re

ss
io

n
:

a
d

ju
st

ed
R

2
fo

r
fi

le
m

et
ri

cs
a
n

d
cl

u
st

er
in

g
o
f

re
su

lt
s

13

F
ig

u
re

4:
L

in
ea

r
re

g
re

ss
io

n
o
f

S
Q

u
O

R
E

ru
le

s:
lm

(m
et

ri
cs

ru
le

s)

BLAN

BRAC

CFT

CLAS

CLOC

COMR

ELOC

FUNC

LC

MLOC

NCC

ROKR

SCMCOMMITSTOTAL

SCMCOMMITTERSTOTAL

SCMFIXESTOTAL

SLOC

STAT

VG

R
N
O
A
S
G

IN
B
O

O
L

R
R
E
T
U
R
N

0
.1

2
0
.2

4
0
.3

3
0
.0

2
0
.1

8
0
.0

4
0
.1

6
0
.2

1
0
.2

0
0
.0

6
0
.1

8
0
.2

1
0
.0

5
0
.0

6
0
.1

8
0
.1

6
0
.3

0
R

S
G

L
B
R
K

0
.0

2
0
.0

1
R

E
L
S
E
F
IN

A
L

0
.1

1
0
.1

7
0
.2

2
0
.0

3
0
.1

0
0
.0

3
0
.1

6
0
.0

7
0
.1

7
0
.0

8
0
.1

2
0
.1

8
0
.0

3
0
.0

4
0
.1

7
0
.1

8
0
.2

1
R

C
O

M
P
O

U
N
D

F
U
L
L

0
.0

3
0
.0

6
0
.0

6
0
.0

6
0
.0

1
0
.0

5
0
.0

3
0
.0

6
0
.0

9
0
.1

3
0
.0

5
0
.0

5
0
.0

6
R

B
R
K

F
IN

A
L

0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
R

N
O

C
L
O

N
E

F
U
N
C
T
IO

N
0
.0

3
R

D
E
F
A
U
L
T

0
.0

2
0
.0

1
0
.0

3
0
.0

1
0
.0

4
0
.0

3
0
.0

2
0
.0

2
0
.0

2
0
.0

1
0
.0

3
0
.0

4
0
.0

2
R

N
O
A
S
G

C
O

N
D

0
.0

4
0
.0

4
0
.0

2
0
.0

2
0
.0

4
0
.0

4
0
.0

3
0
.0

4
0
.0

4
0
.0

6
0
.0

4
R

N
O

C
L
O

N
E

F
IL

E
R

N
O

F
A
L
L
T
H
R
O

U
G

H
R

N
O

C
O

N
T

0
.0

5
0
.0

9
0
.1

4
0
.0

4
0
.0

2
0
.0

9
0
.0

4
0
.0

8
0
.0

4
0
.0

7
0
.0

7
0
.0

1
0
.0

2
0
.1

0
0
.0

9
0
.1

2

18

F
ig

u
re

5
:

L
in

ea
r

re
g
re

ss
io

n
o
f

P
M

D
ru

le
s:

lm
(m

et
ri

cs
ru

le
s)

BLAN

BRAC

CFT

CLAS

CLOC

COMR

ELOC

FUNC

LC

MLOC

NCC

ROKR

SCMCOMMITSTOTAL

SCMCOMMITTERSTOTAL

SCMFIXESTOTAL

SLOC

STAT

VG

E
M

P
T
Y
F
IN

A
L
L
Y
B
L
O

C
K

D
U
P
L
IC

A
T
E
IM

P
O

R
T
S

T
O

O
M

A
N
Y
F
IE

L
D

S
0
.1

4
0
.0

5
0
.0

5
3

0
.0

4
0
.0

6
0
.0

1
0
.1

2
0
.0

6
0
.1

0
8

0
.1

2
0
.1

0
0
.0

6
0
.0

4
0
.0

1
0
.0

4
0
.1

1
0
.1

1
0
.0

6
4

P
R
E
S
E
R
V
E
S
T
A
C
K

T
R
A
C
E

0
.0

2
0
.0

5
0
.0

6
1

0
.0

4
0
.0

3
0
.0

1
0
.0

4
1

0
.0

2
0
.0

7
0
.0

2
0
.0

2
0
.0

4
0
.0

3
0
.0

3
5

A
R
R
A
Y
IS

S
T
O

R
E
D

D
IR

E
C
T
L
Y

0
.0

1
1

0
.0

1
0
.0

1
0
.0

1
0
.0

1
5

U
N
U
S
E
D

L
O

C
A
L
V
A
R
IA

B
L
E

0
.0

1
0
.0

3
0
.0

1
8

0
.0

4
0
.0

1
0
.0

2
0
.0

2
A
V
O

ID
C
A
T
C
H
IN

G
T
H
R
O
W

A
B
L
E

0
.0

1
0
.0

1
6

0
.0

1
0
.0

1
B
O

O
L
E
A
N
IN

S
T
A
N
T
IA

T
IO

N
C
O

N
F
U
S
IN

G
T
E
R
N
A
R
Y

0
.1

5
0
.2

2
0
.2

9
5

0
.0

2
0
.2

3
0
.0

2
0
.2

6
0
.1

6
0
.2

7
9

0
.1

0
0
.2

6
0
.2

2
0
.0

4
0
.0

5
0
.2

7
0
.2

6
0
.2

8
2

E
M

P
T
Y
W

H
IL

E
S
T
M

T
S
Y
S
T
E
M

P
R
IN

T
L
N

0
.0

1
0
.0

2
0
.0

1
5

0
.0

6
0
.0

2
0
.0

2
0
.0

3
E
X
C
E
S
S
IV

E
IM

P
O

R
T
S

0
.1

8
0
.2

0
0
.2

8
9

0
.0

7
0
.1

6
0
.0

1
0
.2

6
0
.1

3
0
.2

5
0
.2

6
0
.1

8
0
.2

1
0
.0

9
0
.1

2
0
.2

7
0
.2

3
0
.2

3
7

A
V
O

ID
T
H
R
O
W

IN
G

N
U
L
L
P
O

IN
T
E
R
E
X
C
E
P
T
IO

N
S
W

IT
C
H
D

E
N
S
IT

Y
U
S
E
N
O

T
IF

Y
A
L
L
IN

S
T
E
A
D

O
F
N
O

T
IF

Y
N
O

N
C
A
S
E
L
A
B
E
L
IN

S
W

IT
C
H
S
T
A
T
E
M

E
N
T

S
IM

P
L
IF

Y
C
O

N
D

IT
IO

N
A
L

0
.0

1
1

0
.0

1
0
.0

1
U
N
U
S
E
D

P
R
IV

A
T
E
M

E
T
H
O

D
0
.0

1
D

O
N
O

T
T
H
R
O
W

E
X
C
E
P
T
IO

N
IN

F
IN

A
L
L
Y

T
O

O
M

A
N
Y
S
T
A
T
IC

IM
P
O

R
T
S

M
E
T
H
O

D
R
E
T
U
R
N
S
IN

T
E
R
N
A
L
A
R
R
A
Y

0
.0

3
0
.0

3
0
.0

2
9

0
.0

4
0
.0

2
0
.0

5
0
.0

3
1

0
.0

1
0
.0

3
0
.0

3
0
.0

2
0
.0

2
0
.0

4
A
V
O

ID
T
H
R
E
A
D

G
R
O

U
P

C
O

U
P
L
IN

G
B
E
T
W

E
E
N
O

B
J
E
C
T
S

A
V
O

ID
U
S
IN

G
H
A
R
D

C
O

D
E
D

IP
C
L
O

S
E
R
E
S
O

U
R
C
E

0
.0

1
A
V
O

ID
R
E
T
H
R
O
W

IN
G

E
X
C
E
P
T
IO

N
0
.0

1
0
.0

1
E
M

P
T
Y
C
A
T
C
H
B
L
O

C
K

0
.0

1
0
.0

2
0
.0

2
0
.0

2
0
.0

1
0
.0

1
2

0
.0

2
0
.0

2
0
.0

2
0
.0

1
E
M

P
T
Y
IF

S
T
M

T
0
.0

3
0
.0

1
6

0
.0

3
0
.0

1
0
.0

2
0
.0

2
2

0
.0

3
0
.0

3
0
.0

3
0
.0

2
0
.0

1
4

IM
P
O

R
T
F
R
O

M
S
A
M

E
P
A
C
K

A
G

E
A
V
O

ID
D

E
E
P
L
Y
N
E
S
T
E
D

IF
S
T
M

T
S

0
.0

1
0
.0

2
0
.0

2
8

0
.0

1
0
.0

2
0
.0

2
0
.0

2
3

0
.0

1
0
.0

4
0
.0

2
0
.0

2
0
.0

2
6

U
S
E
S
T
R
IN

G
B
U
F
F
E
R
L
E
N
G

T
H

E
M

P
T
Y
S
T
A
T
E
M

E
N
T
N
O

T
IN

L
O

O
P

A
V
O

ID
T
H
R
O
W

IN
G

R
A
W

E
X
C
E
P
T
IO

N
T
Y
P
E
S

0
.0

6
0
.0

7
0
.0

8
0
.1

0
0
.0

4
0
.0

9
0
.0

7
4

0
.0

2
0
.0

5
0
.0

7
0
.0

2
0
.0

1
0
.0

5
0
.0

3
0
.0

8
A
S
S
IG

N
M

E
N
T
T
O

N
O

N
F
IN

A
L
S
T
A
T
IC

0
.0

1
G

O
D

C
L
A
S
S

0
.3

4
0
.4

9
0
.6

1
1

0
.0

6
0
.3

6
0
.0

4
0
.4

6
0
.4

0
0
.5

1
3

0
.1

8
0
.4

3
0
.3

8
0
.1

0
0
.0

1
0
.1

3
0
.5

0
0
.4

7
0
.6

0
7

U
N
C
O

N
D

IT
IO

N
A
L
IF

S
T
A
T
E
M

E
N
T

R
E
T
U
R
N
E
M

P
T
Y
A
R
R
A
Y
R
A
T
H
E
R
T
H
A
N
N
U
L
L

0
.0

1
0
.0

1
U
N
U
S
E
D

P
R
IV

A
T
E
F
IE

L
D

0
.0

1
D

O
N
T
IM

P
O

R
T
J
A
V
A
L
A
N
G

E
X
C
E
S
S
IV

E
P
U
B
L
IC

C
O

U
N
T

0
.1

8
0
.1

6
0
.1

4
9

0
.0

3
0
.2

4
0
.1

1
0
.3

3
0
.1

8
8

0
.0

8
0
.1

7
0
.0

6
0
.1

3
0
.0

8
0
.2

1
5

U
N
N
E
C
E
S
S
A
R
Y
C
A
S
E
C
H
A
N
G

E
N
O

N
T
H
R
E
A
D

S
A
F
E
S
IN

G
L
E
T
O

N
0
.0

1
0
.0

1
0
.0

1
P
O

S
IT

IO
N
L
IT

E
R
A
L
S
F
IR

S
T
IN

C
O

M
P
A
R
IS

O
N
S

0
.0

2
0
.0

1
9

0
.0

1
0
.0

1
0
.0

1
7

0
.0

2
0
.0

3
0
.0

2
0
.0

1
0
.0

1
7

L
O

O
S
E
C
O

U
P
L
IN

G
0
.0

3
0
.0

7
0
.0

7
4

0
.0

7
0
.0

4
0
.0

4
0
.0

5
9

0
.0

1
0
.0

3
0
.0

6
0
.0

4
0
.0

4
0
.0

5
5

A
V
O

ID
C
A
T
C
H
IN

G
N
P
E

0
.0

3
0
.0

3
4

0
.0

2
0
.0

2
0
.0

2
0
.0

2
4

0
.0

2
0
.0

4
0
.0

3
0
.0

2
0
.0

2
1

19

F
ig

u
re

6:
L

in
ea

r
re

g
re

ss
io

n
o
f

C
h

ec
k
st

y
le

ru
le

s:
lm

(m
et

ri
cs

ru
le

s)

BLAN

BRAC

CFT

CLAS

CLOC

COMR

ELOC

FUNC

LC

MLOC

NCC

ROKR

SCMCOMMITSTOTAL

SCMCOMMITTERSTOTAL

SCMFIXESTOTAL

SLOC

STAT

VG

A
R
R
A
Y
T
Y
P
E
S
T
Y
L
E
C
H
E
C
K

0
.0

2
0
.0

3
0
.0

4
0
.0

1
0
.0

1
0
.0

4
6

0
.0

1
5

0
.0

3
4

0
.0

3
0
.0

4
1

0
.0

5
0
.0

4
4

0
.0

5
2

0
.0

3
8

H
ID

D
E
N
F
IE

L
D

C
H
E
C
K

0
.0

6
0
.0

5
0
.0

4
0
.0

5
0
.0

1
0
.0

3
3

0
.1

0
4

0
.0

5
2

0
.0

7
0
.0

6
0
.0

3
8

0
.0

2
4

0
.0

7
7

IL
L
E
G

A
L
T
H
R
O
W

S
C
H
E
C
K

0
.0

1
0
.0

1
2

A
V
O

ID
S
T
A
R
IM

P
O

R
T
C
H
E
C
K

J
A
V
A
D

O
C
P
A
C
K

A
G

E
C
H
E
C
K

0
.0

1
E
M

P
T
Y
B
L
O

C
K
C
H
E
C
K

0
.0

1
0
.0

2
0
.0

3
0
.0

1
0
.0

2
0
.0

2
8

0
.0

1
7

0
.0

2
1

0
.0

3
6

0
.0

4
0
.0

2
8

0
.0

2
6

0
.0

1
5

R
E
D

U
N
D
A
N
T
M

O
D

IF
IE

R
C
H
E
C
K

0
.0

3
J
A
V
A
D

O
C
M

E
T
H
O

D
C
H
E
C
K

0
.4

8
0
.4

4
0
.4

3
0
.0

8
0
.2

4
0
.1

7
0
.5

0
4

0
.6

5
0
.5

0
4

0
.1

5
0
.6

6
8

0
.3

6
0
.0

7
0
.0

8
0
.5

2
3

0
.4

5
8

0
.5

4
4

U
N
U
S
E
D

IM
P
O

R
T
S
C
H
E
C
K

O
N
E
S
T
A
T
E
M

E
N
T
P
E
R
L
IN

E
C
H
E
C
K

0
.0

3
0
.0

1
0
.0

1
2

0
.0

2
0
.0

1
4

0
.0

1
0
.0

2
9

0
.0

1
0
.0

1
2

0
.0

1
1

0
.0

3
N
E
E
D

B
R
A
C
E
S
C
H
E
C
K

0
.0

3
0
.0

6
0
.0

6
0
.0

6
0
.0

4
3

0
.0

3
1

0
.0

5
9

0
.0

9
3

0
.1

4
0
.0

4
8

0
.0

5
1

0
.0

5
8

N
O
W

H
IT

E
S
P
A
C
E
B
E
F
O

R
E
C
H
E
C
K

E
Q

U
A
L
S
H
A
S
H
C
O

D
E
C
H
E
C
K

0
.0

1
M

U
L
T
IP

L
E
S
T
R
IN

G
L
IT

E
R
A
L
S
C
H
E
C
K

0
.1

8
0
.0

9
0
.0

9
0
.0

3
0
.0

3
0
.1

1
0
.3

3
5

0
.1

1
2

0
.2

1
4

0
.0

4
0
.3

0
3

0
.1

0
0
.2

8
9

0
.3

4
8

0
.0

8
6

A
N
O

N
IN

N
E
R
L
E
N
G

T
H
C
H
E
C
K

0
.0

2
0
.0

4
0
.0

4
0
.0

6
0
.0

2
0
.0

5
6

0
.0

1
9

0
.0

4
6

0
.0

2
0
.0

5
3

0
.0

3
0
.0

5
6

0
.0

5
2

0
.0

3
3

M
IS

P
L
A
C
E
D

N
U
L
L
C
H
E
C
K

M
O

D
IF

IE
R
O

R
D

E
R
C
H
E
C
K

0
.0

4
0
.0

6
0
.0

4
0
.0

3
0
.0

4
0
.0

5
5

0
.0

4
8

0
.0

2
0
.0

8
2

0
.0

6
0
.0

2
0
.0

1
0
.0

1
0
.0

4
7

0
.0

2
9

0
.0

4
7

C
L
A
S
S
F
A
N
O

U
T
C
O

M
P
L
E
X
IT

Y
C
H
E
C
K

0
.2

3
0
.2

6
0
.3

6
0
.1

1
0
.1

9
0
.0

4
0
.3

3
7

0
.1

9
0
.3

2
0
.2

3
0
.2

4
0
.3

0
0
.1

1
0
.0

1
0
.1

4
0
.3

4
2

0
.3

0
6

0
.2

9
9

R
E
D

U
N
D
A
N
T
T
H
R
O
W

S
C
H
E
C
K

0
.0

2
0
.0

1
0
.0

2
0
.0

3
3

0
.0

1
9

0
.0

2
6

0
.0

5
2

0
.0

3
0
.0

3
2

0
.0

1
9

0
.0

1
3

P
A
R
A
M

E
T
E
R
A
S
S
IG

N
M

E
N
T
C
H
E
C
K

0
.0

3
0
.0

9
0
.1

1
0
.0

7
0
.0

8
4

0
.0

5
4

0
.0

9
4

0
.0

2
0
.1

0
.1

1
0
.0

9
2

0
.0

8
2

0
.1

0
3

R
E
D

U
N
D
A
N
T
IM

P
O

R
T
C
H
E
C
K

U
N
N
E
C
E
S
S
A
R
Y
P
A
R
E
N
T
H
E
S
E
S
C
H
E
C
K

0
.0

4
0
.0

4
0
.0

4
0
.0

5
0
.0

4
1

0
.0

3
5

0
.0

5
4

0
.0

5
6

0
.0

7
0
.0

4
4

0
.0

4
3

0
.0

4
5

C
L
A
S
S
D
A
T
A
A
B
S
T
R
A
C
T
IO

N
C
O

U
P
L
IN

G
C
H
E
C
K

0
.2

5
0
.1

7
0
.2

2
0
.1

3
0
.1

3
0
.0

8
0
.3

1
1

0
.1

5
3

0
.2

7
0
.2

0
0
.2

0
3

0
.2

6
0
.0

8
0
.0

1
0
.1

0
0
.2

9
7

0
.2

7
9

0
.1

9
7

IN
T
E
R
F
A
C
E
IS

T
Y
P
E
C
H
E
C
K

D
E
S
IG

N
F
O

R
E
X
T
E
N
S
IO

N
C
H
E
C
K

0
.3

9
0
.3

7
0
.2

8
0
.0

5
0
.3

1
0
.1

1
0
.3

0
6

0
.7

4
3

0
.3

9
7

0
.0

9
0
.4

4
4

0
.2

2
0
.0

4
0
.0

5
0
.3

4
0
.2

4
2

0
.4

4
8

V
IS

IB
IL

IT
Y
M

O
D

IF
IE

R
C
H
E
C
K

0
.0

3
0
.0

8
0
.0

3
0
.0

2
0
.0

4
0
.0

2
0
.0

4
1

0
.0

3
9

0
.0

5
6

0
.0

6
6

0
.0

8
0
.0

5
2

0
.0

3
5

0
.0

3
9

L
IN

E
L
E
N
G

T
H
C
H
E
C
K

0
.4

7
0
.2

7
0
.4

5
0
.1

1
0
.3

2
0
.0

7
0
.6

1
7

0
.3

2
6

0
.5

5
0
.3

2
0
.7

3
1

0
.3

3
0
.0

9
0
.1

1
0
.5

6
8

0
.6

1
9

0
.4

5
2

A
V
O

ID
IN

L
IN

E
C
O

N
D

IT
IO

N
A
L
S
C
H
E
C
K

0
.1

4
0
.0

7
0
.0

9
0
.0

9
0
.0

8
1

0
.1

2
5

0
.1

0
2

0
.0

6
0
.1

4
3

0
.0

7
0
.0

1
0
.0

1
0
.0

8
4

0
.0

6
9

0
.1

7
B
R
O

K
E
N
N
U
L
L
C
H
E
C
K

M
A
G

IC
N
U
M

B
E
R
C
H
E
C
K

0
.1

7
0
.0

5
0
.0

5
0
.0

4
0
.0

3
0
.0

8
0
.1

9
2

0
.0

7
3

0
.1

3
3

0
.0

7
0
.1

9
7

0
.0

9
0
.0

1
0
.1

6
4

0
.1

9
2

0
.0

6
4

N
E
W

L
IN

E
A
T
E
N
D

O
F
F
IL

E
C
H
E
C
K

J
A
V
A
D

O
C
V
A
R
IA

B
L
E
C
H
E
C
K

0
.5

2
0
.3

0
0
.3

8
0
.1

0
0
.2

3
0
.0

9
0
.4

4
1

0
.3

8
4

0
.4

2
4

0
.4

7
0
.4

8
2

0
.3

0
0
.1

0
0
.1

2
0
.4

3
7

0
.3

7
5

0
.4

1
9

S
IM

P
L
IF

Y
B
O

O
L
E
A
N
R
E
T
U
R
N
C
H
E
C
K

0
.0

1
0
.0

1
0
.0

1
0
.0

1
2

0
.0

1
0
.0

1
2

R
IG

H
T
C
U
R
L
Y
C
H
E
C
K

0
.0

5
0
.4

0
0
.1

4
0
.0

3
0
.0

7
0
.0

5
0
.1

5
4

0
.0

6
1

0
.1

7
3

0
.1

2
0
.2

0
0
.0

7
0
.0

3
0
.0

6
0
.2

0
8

0
.1

3
9

0
.1

1
7

J
A
V
A
D

O
C
T
Y
P
E
C
H
E
C
K

0
.1

7
0
.0

6
0
.0

2
0
.0

1
2

0
.0

1
8

0
.0

4
0
.0

1
0
.0

1
8

0
.0

1
7

E
M

P
T
Y
S
T
A
T
E
M

E
N
T
C
H
E
C
K

20

F
ig

u
re

13
:

P
ol

y
n

o
m

ia
l

re
g
re

ss
io

n
o
f

S
Q

u
O

R
E

ru
le

s:
p

lm
(m

et
ri

cs
ru

le
s)

BLAN

BRAC

CFT

CLAS

CLOC

COMR

ELOC

FUNC

LC

MLOC

NCC

ROKR

SCMCOMMITSTOTAL

SCMCOMMITTERSTOTAL

SCMFIXESTOTAL

SLOC

STAT

VG

R
N
O
A
S
G

IN
B
O

O
L

R
R
E
T
U
R
N

0
.1

9
0
.3

3
0
.4

2
0
.0

4
0
.2

6
0
.0

5
0
.2

3
0
.2

8
0
.2

9
0
.1

0
0
.2

5
0
.3

1
0
.0

7
0
.0

8
0
.2

6
0
.2

2
0
.4

0
R

S
G

L
B
R
K

0
.0

2
0
.0

1
R

E
L
S
E
F
IN

A
L

0
.1

2
0
.1

7
0
.2

3
0
.0

3
0
.1

3
0
.0

3
0
.1

7
0
.0

9
0
.1

8
0
.1

0
0
.1

4
0
.2

1
0
.0

3
0
.0

4
0
.1

8
0
.1

9
0
.2

3
R

C
O

M
P
O

U
N
D

F
U
L
L

0
.0

3
0
.0

7
0
.0

7
0
.0

6
0
.0

2
0
.0

5
0
.0

4
0
.0

7
0
.0

9
0
.1

5
0
.0

6
0
.0

6
0
.0

7
R

B
R
K

F
IN

A
L

0
.0

1
0
.0

1
0
.0

2
0
.0

2
0
.0

3
0
.0

1
0
.0

2
0
.0

1
0
.0

3
0
.0

2
0
.0

3
0
.0

3
0
.0

2
R

N
O

C
L
O

N
E

F
U
N
C
T
IO

N
0
.0

3
R

D
E
F
A
U
L
T

0
.0

2
0
.0

1
0
.0

3
0
.0

4
0
.0

4
0
.0

3
0
.0

2
0
.0

2
0
.0

2
0
.0

1
0
.0

1
0
.0

3
0
.0

4
0
.0

2
R

N
O
A
S
G

C
O

N
D

0
.0

1
0
.0

6
0
.0

7
0
.0

4
0
.0

2
0
.0

5
0
.0

2
0
.0

5
0
.0

1
0
.0

3
0
.0

7
0
.0

2
0
.0

2
0
.0

5
0
.0

6
0
.0

6
R

N
O

C
L
O

N
E

F
IL

E
R

N
O

F
A
L
L
T
H
R
O

U
G

H
R

N
O

C
O

N
T

0
.0

6
0
.1

1
0
.1

5
0
.0

6
0
.0

2
0
.1

0
0
.0

5
0
.1

0
0
.0

4
0
.0

7
0
.0

8
0
.0

2
0
.0

3
0
.1

1
0
.1

0
0
.1

4

30

Appendix D

Code samples

D.1 Ant > Javadoc.java > execute()

The execute() function is presented in section 6.1.2 page 107 and figure 6.0 page 111
from chapter 5 to illustrate some metrics on real code.

1 % s t y l e=JavaInputStyle]
2 pub l i c void execute () throws Bui ldException {
3 i f (" javadoc2 " . equa l s (getTaskType ())) {
4 log (" ! ! javadoc2 i s deprecated . Use javadoc in s t ead . ! ! ") ;
5 }
6
7 Vector packagesToDoc = new Vector () ;
8 Path sourceDi r s = new Path (ge tPro j e c t ()) ;
9

10 i f (packageList != nu l l && sourcePath == nu l l) {
11 St r ing msg = " sourcePath a t t r i bu t e must be s e t when "
12 + " sp e c i f y i n g pa ckag e l i s t . " ;
13 throw new BuildException (msg) ;
14 }
15
16 i f (sourcePath != nu l l) {
17 sourceDi r s . addExist ing (sourcePath) ;
18 }
19
20 parsePackages (packagesToDoc , sourceDi r s) ;
21
22 i f (packagesToDoc . s i z e () != 0 && sourceDi r s . s i z e () == 0) {
23 St r ing msg = " sourcePath a t t r i bu t e must be s e t when "
24 + " sp e c i f y i n g package names . " ;
25 throw new BuildException (msg) ;
26 }
27
28 Vector sourceFi lesToDoc = (Vector) s ou r c eF i l e s . c l one () ;
29 addFi l eSet s (sourceFi lesToDoc) ;
30
31 i f (packageList == nu l l && packagesToDoc . s i z e () == 0
32 && sourceFi lesToDoc . s i z e () == 0) {
33 throw new BuildException ("No source f i l e s and no packages have "
34 + "been s p e c i f i e d . ") ;
35 }
36
37 log (" Generating Javadoc " , Pro j ec t .MSG_INFO) ;
38
39 Commandline toExecute = (Commandline) cmd . c lone () ;
40 toExecute . se tExecutab le (JavaEnvUtils . getJdkExecutable (" javadoc ")) ;
41
42 // −− gene ra l javadoc arguments
43 i f (d o c t i t l e != nu l l) {
44 toExecute . createArgument () . setValue ("− d o c t i t l e ") ;
45 toExecute . createArgument () . setValue (expand (d o c t i t l e . getText ())) ;
46 }
47 i f (header != nu l l) {
48 toExecute . createArgument () . setValue ("−header ") ;
49 toExecute . createArgument () . setValue (expand (header . getText ())) ;
50 }
51 i f (f o o t e r != nu l l) {
52 toExecute . createArgument () . setValue ("− f o o t e r ") ;
53 toExecute . createArgument () . setValue (expand (f o o t e r . getText ())) ;

279

54 }
55 i f (bottom != nu l l) {
56 toExecute . createArgument () . setValue ("−bottom ") ;
57 toExecute . createArgument () . setValue (expand (bottom . getText ())) ;
58 }
59
60 i f (c l a s spa th == nu l l) {
61 c l a s spa th = (new Path (ge tPro j e c t ())) . concatSystemClasspath (" l a s t ") ;
62 } e l s e {
63 c l a s spa th = c la s spa th . concatSystemClasspath (" ignore ") ;
64 }
65
66 i f (! javadoc1) {
67 i f (c l a s spa th . s i z e () > 0) {
68 toExecute . createArgument () . setValue ("− c l a s spa th ") ;
69 toExecute . createArgument () . setPath (c l a s spa th) ;
70 }
71 i f (sourceDi r s . s i z e () > 0) {
72 toExecute . createArgument () . setValue ("− sourcepath ") ;
73 toExecute . createArgument () . setPath (sourceDi r s) ;
74 }
75 } e l s e {
76 sourceDi r s . append (c l a s spa th) ;
77 i f (sourceDi r s . s i z e () > 0) {
78 toExecute . createArgument () . setValue ("− c l a s spa th ") ;
79 toExecute . createArgument () . setPath (sourceDi r s) ;
80 }
81 }
82
83 i f (v e r s i on && doc l e t == nu l l) {
84 toExecute . createArgument () . setValue ("− ve r s i on ") ;
85 }
86 i f (author && doc l e t == nu l l) {
87 toExecute . createArgument () . setValue ("−author ") ;
88 }
89
90 i f (javadoc1 | | do c l e t == nu l l) {
91 i f (destDir == nu l l) {
92 St r ing msg = " destDir a t t r i bu t e must be s e t ! " ;
93 throw new BuildException (msg) ;
94 }
95 }
96
97 // −−−−−−−−−−−−−−−−−−−−−−−−−−−− javadoc2 arguments f o r d e f au l t doc l e t
98
99 i f (! javadoc1) {

100 i f (doc l e t != nu l l) {
101 i f (doc l e t . getName () == nu l l) {
102 throw new BuildException ("The doc l e t name must be "
103 + " s p e c i f i e d . " , getLocat ion ()) ;
104 } e l s e {
105 toExecute . createArgument () . setValue ("−doc l e t ") ;
106 toExecute . createArgument () . setValue (doc l e t . getName ()) ;
107 i f (doc l e t . getPath () != nu l l) {
108 Path docletPath
109 = doc l e t . getPath () . concatSystemClasspath (" ignore ") ;
110 i f (doc letPath . s i z e () != 0) {
111 toExecute . createArgument () . setValue ("−doc le tpath ") ;
112 toExecute . createArgument () . setPath (doc letPath) ;
113 }
114 }
115 f o r (Enumeration e = doc l e t . getParams () ;
116 e . hasMoreElements () ;) {
117 DocletParam param = (DocletParam) e . nextElement () ;
118 i f (param . getName () == nu l l) {
119 throw new BuildException (" Doclet parameters must "
120 + "have a name ") ;
121 }
122
123 toExecute . createArgument () . setValue (param . getName ()) ;
124 i f (param . getValue () != nu l l) {
125 toExecute . createArgument ()
126 . setValue (param . getValue ()) ;
127 }
128 }
129 }
130 }
131 i f (bootc l a s spath != nu l l && bootc la s spath . s i z e () > 0) {
132 toExecute . createArgument () . setValue ("−bootc la s spath ") ;
133 toExecute . createArgument () . setPath (bootc la s spath) ;
134 }
135
136 // add the l i n k s arguments
137 i f (l i n k s . s i z e () != 0) {
138 f o r (Enumeration e = l i n k s . e lements () ; e . hasMoreElements () ;) {
139 LinkArgument l a = (LinkArgument) e . nextElement () ;

280

140
141 i f (l a . getHre f () == nu l l | | l a . getHre f () . l ength () == 0) {
142 log ("No hr e f was given f o r the l i n k − sk ipp ing " ,
143 Pro j ec t .MSG_VERBOSE) ;
144 cont inue ;
145 } e l s e {
146 // i s the h r e f a va l i d URL
147 try {
148 URL base = new URL(" f i l e : / / . ") ;
149 new URL(base , l a . getHre f ()) ;
150 } catch (MalformedURLException mue) {
151 // ok − j u s t sk ip
152 log (" Link hr e f \"" + la . getHre f ()
153 + "\" i s not a va l i d u r l − sk ipp ing l i n k " ,
154 Pro j ec t .MSG_WARN) ;
155 cont inue ;
156 }
157 }
158
159 i f (l a . i s L i n kO f f l i n e ()) {
160 F i l e packageLis tLocat ion = la . ge tPackage l i s tLoc () ;
161 i f (packageLis tLocat ion == nu l l) {
162 throw new BuildException ("The package l i s t "
163 + " l o c a t i on f o r l i n k " + la . getHre f ()
164 + " must be provided because the l i n k i s "
165 + " o f f l i n e ") ;
166 }
167 F i l e packageL i s tF i l e =
168 new F i l e (packageListLocat ion , "package− l i s t ") ;
169 i f (packageL i s tF i l e . e x i s t s ()) {
170 try {
171 St r ing packageListURL =
172 f i l e U t i l s . getFileURL (packageLis tLocat ion)
173 . toExternalForm () ;
174 toExecute . createArgument ()
175 . setValue ("− l i n k o f f l i n e ") ;
176 toExecute . createArgument ()
177 . setValue (l a . getHre f ()) ;
178 toExecute . createArgument ()
179 . setValue (packageListURL) ;
180 } catch (MalformedURLException ex) {
181 log ("Warning : Package l i s t l o c a t i on was "
182 + " i nva l i d " + packageListLocat ion ,
183 Pro j ec t .MSG_WARN) ;
184 }
185 } e l s e {
186 log ("Warning : No package l i s t was found at "
187 + packageListLocat ion , Pro j ec t .MSG_VERBOSE) ;
188 }
189 } e l s e {
190 toExecute . createArgument () . setValue ("− l i n k ") ;
191 toExecute . createArgument () . setValue (l a . getHre f ()) ;
192 }
193 }
194 }
195
196 // add the s i n g l e group arguments
197 // Javadoc 1 .2 r u l e s :
198 // Mult ip le −group args a l lowed .
199 // Each arg i n c l ude s 3 s t r i n g s : −group [name] [p a ckag e l i s t] .
200 // Elements in [p a ckag e l i s t] are colon−de l im i t ed .
201 // An element in [p a ckag e l i s t] may end with the ∗ wildcard .
202
203 // Ant javadoc task r u l e s f o r group a t t r i bu t e :
204 // Args are comma−de l im i t ed .
205 // Each arg i s 2 space−de l im i t ed s t r i n g s .
206 // E. g . , group="XSLT_Packages org . apache . xalan . x s l t ∗ ,
207 // XPath_Packages org . apache . xalan . xpath∗"
208 i f (group != nu l l) {
209 Str ingToken ize r tok = new Str ingToken ize r (group , " ," , f a l s e) ;
210 whi le (tok . hasMoreTokens ()) {
211 St r ing grp = tok . nextToken () . tr im () ;
212 in t space = grp . indexOf (" ") ;
213 i f (space > 0) {
214 St r ing name = grp . subs t r i ng (0 , space) ;
215 St r ing pkgList = grp . subs t r i ng (space + 1) ;
216 toExecute . createArgument () . setValue ("−group ") ;
217 toExecute . createArgument () . setValue (name) ;
218 toExecute . createArgument () . setValue (pkgList) ;
219 }
220 }
221 }
222
223 // add the group arguments
224 i f (groups . s i z e () != 0) {
225 f o r (Enumeration e = groups . e lements () ; e . hasMoreElements () ;) {

281

226 GroupArgument ga = (GroupArgument) e . nextElement () ;
227 St r ing t i t l e = ga . g e tT i t l e () ;
228 St r ing packages = ga . getPackages () ;
229 i f (t i t l e == nu l l | | packages == nu l l) {
230 throw new BuildException ("The t i t l e and packages must "
231 + "be s p e c i f i e d f o r group "
232 + " elements . ") ;
233 }
234 toExecute . createArgument () . setValue ("−group ") ;
235 toExecute . createArgument () . setValue (expand (t i t l e)) ;
236 toExecute . createArgument () . setValue (packages) ;
237 }
238 }
239
240 // JavaDoc 1 .4 parameters
241 i f (javadoc4) {
242 f o r (Enumeration e = tags . e lements () ; e . hasMoreElements () ;) {
243 Object element = e . nextElement () ;
244 i f (element i n s t an c e o f TagArgument) {
245 TagArgument ta = (TagArgument) element ;
246 F i l e tagDir = ta . getDir (g e tPro j e c t ()) ;
247 i f (tagDir == nu l l) {
248 // The tag element i s not used as a f i l e s e t ,
249 // but s p e c i f i e s the tag d i r e c t l y .
250 toExecute . createArgument () . setValue ("− tag ") ;
251 toExecute . createArgument () . setValue (ta . getParameter ()) ;
252 } e l s e {
253 // The tag element i s used as a f i l e s e t . Parse a l l the f i l e s and
254 // c r ea t e −tag arguments .
255 DirectoryScanner tagDefScanner = ta . getDirectoryScanner (ge tPro j e c t ()) ;
256 St r ing [] f i l e s = tagDefScanner . g e t I n c l udedF i l e s () ;
257 f o r (i n t i = 0 ; i < f i l e s . l ength ; i++) {
258 F i l e tagDe fF i l e = new F i l e (tagDir , f i l e s [i]) ;
259 try {
260 BufferedReader in
261 = new BufferedReader (new Fi leReader (tagDe fF i l e)) ;
262 St r ing l i n e = nu l l ;
263 whi le ((l i n e = in . readLine ()) != nu l l) {
264 toExecute . createArgument () . setValue ("− tag ") ;
265 toExecute . createArgument () . setValue (l i n e) ;
266 }
267 in . c l o s e () ;
268 } catch (IOException i o e) {
269 throw new BuildException ("Couldn ’ t read "
270 + " tag f i l e from "
271 + tagDe fF i l e . getAbsolutePath () , i o e) ;
272 }
273 }
274 }
275 } e l s e {
276 Extens ionIn fo t a g l e t I n f o = (Extens ionIn fo) element ;
277 toExecute . createArgument () . setValue ("− t a g l e t ") ;
278 toExecute . createArgument () . setValue (t a g l e t I n f o
279 . getName ()) ;
280 i f (t a g l e t I n f o . getPath () != nu l l) {
281 Path tag le tPath = t a g l e t I n f o . getPath ()
282 . concatSystemClasspath (" ignore ") ;
283 i f (tag le tPath . s i z e () != 0) {
284 toExecute . createArgument ()
285 . setValue ("− t ag l e tpa th ") ;
286 toExecute . createArgument () . setPath (tag le tPath) ;
287 }
288 }
289 }
290 }
291
292 i f (source != nu l l) {
293 toExecute . createArgument () . setValue ("− source ") ;
294 toExecute . createArgument () . setValue (source) ;
295 }
296
297 i f (l i n k s ou r c e && doc l e t == nu l l) {
298 toExecute . createArgument () . setValue ("− l i n k s ou r c e ") ;
299 }
300 i f (b r e ak i t e r a t o r && doc l e t == nu l l) {
301 toExecute . createArgument () . setValue ("− b r e ak i t e r a t o r ") ;
302 }
303 i f (n o q u a l i f i e r != nu l l && doc l e t == nu l l) {
304 toExecute . createArgument () . setValue ("− n o q u a l i f i e r ") ;
305 toExecute . createArgument () . setValue (n o q u a l i f i e r) ;
306 }
307 }
308
309 }
310
311 F i l e tmpList = nu l l ;

282

312 PrintWriter s r cL i s tWr i t e r = nu l l ;
313 try {
314
315 /∗∗
316 ∗ Write s o u r c e f i l e s and package names to a temporary f i l e
317 ∗ i f r equested .
318 ∗/
319 i f (u s eExte rna lF i l e) {
320 i f (tmpList == nu l l) {
321 tmpList = f i l e U t i l s . createTempFile (" javadoc " , "" , nu l l) ;
322 tmpList . deleteOnExit () ;
323 toExecute . createArgument ()
324 . setValue ("@" + tmpList . getAbsolutePath ()) ;
325 }
326 s r cL i s tWr i t e r = new PrintWriter (
327 new Fi l eWr i t e r (tmpList . getAbsolutePath () ,
328 true)) ;
329 }
330
331 Enumeration e = packagesToDoc . e lements () ;
332 whi le (e . hasMoreElements ()) {
333 St r ing packageName = (St r ing) e . nextElement () ;
334 i f (u s eExte rna lF i l e) {
335 s r cL i s tWr i t e r . p r i n t l n (packageName) ;
336 } e l s e {
337 toExecute . createArgument () . setValue (packageName) ;
338 }
339 }
340
341 e = sourceFi lesToDoc . e lements () ;
342 whi le (e . hasMoreElements ()) {
343 SourceF i l e s f = (SourceF i l e) e . nextElement () ;
344 St r ing sourceFileName = s f . g e tF i l e () . getAbsolutePath () ;
345 i f (u s eExte rna lF i l e) {
346 i f (javadoc4 && sourceFileName . indexOf (" ") > −1) {
347 s r cL i s tWr i t e r . p r i n t l n ("\"" + sourceFileName + "\"") ;
348 } e l s e {
349 s r cL i s tWr i t e r . p r i n t l n (sourceFileName) ;
350 }
351 } e l s e {
352 toExecute . createArgument () . setValue (sourceFileName) ;
353 }
354 }
355
356 } catch (IOException e) {
357 tmpList . d e l e t e () ;
358 throw new BuildException (" Error c r e a t i ng temporary f i l e " ,
359 e , getLocat ion ()) ;
360 } f i n a l l y {
361 i f (s r cL i s tWr i t e r != nu l l) {
362 s r cL i s tWr i t e r . c l o s e () ;
363 }
364 }
365
366 i f (packageList != nu l l) {
367 toExecute . createArgument () . setValue ("@" + packageList) ;
368 }
369 log (toExecute . describeCommand () , Pro j ec t .MSG_VERBOSE) ;
370
371 log (" Javadoc execut ion " , Pro j ec t .MSG_INFO) ;
372
373 JavadocOutputStream out = new JavadocOutputStream (Pro j ec t .MSG_INFO) ;
374 JavadocOutputStream e r r = new JavadocOutputStream (Pro j ec t .MSG_WARN) ;
375 Execute exe = new Execute (new PumpStreamHandler (out , e r r)) ;
376 exe . setAntRun (ge tPro j e c t ()) ;
377
378 /∗
379 ∗ No reason to change the working d i r e c t o r y as a l l f i l enames and
380 ∗ path components have been r e s o l v ed a l ready .
381 ∗
382 ∗ Avoid problems with command l i n e l ength in some environments .
383 ∗/
384 exe . setWorkingDirectory (nu l l) ;
385 try {
386 exe . setCommandline (toExecute . getCommandline ()) ;
387 i n t r e t = exe . execute () ;
388 i f (r e t != 0 && fa i lOnError) {
389 throw new BuildException (" Javadoc returned " + ret , getLocat ion ()) ;
390 }
391 } catch (IOException e) {
392 throw new BuildException (" Javadoc f a i l e d : " + e , e , getLocat ion ()) ;
393 } f i n a l l y {
394 i f (tmpList != nu l l) {
395 tmpList . d e l e t e () ;
396 tmpList = nu l l ;
397 }

283

398
399 out . logFlush () ;
400 e r r . logFlush () ;
401 try {
402 out . c l o s e () ;
403 e r r . c l o s e () ;
404 } catch (IOException e) {
405 // ignore
406 }
407 }
408 }

D.2 Agar > sha1.c > SHA1Transform()

This function is detected as hard to read code by the outliers detection mechanism, see
section 8.4.1 on page 146.

1 % s t y l e=CInputStyle]
2 /∗
3 ∗ Hash a s i n g l e 512−b i t block . This i s the core o f the a lgor i thm .
4 ∗/
5 void
6 AG_SHA1Transform(Uint32 s t a t e [5] , const Uint8 bu f f e r [AG_SHA1_BLOCK_LENGTH])
7 {
8 Uint32 a , b , c , d , e ;
9 Uint8 workspace [AG_SHA1_BLOCK_LENGTH] ;

10 typede f union {
11 Uint8 c [6 4] ;
12 Uint32 l [1 6] ;
13 } CHAR64LONG16;
14 CHAR64LONG16 ∗block = (CHAR64LONG16 ∗) workspace ;
15
16 (void)memcpy(block , bu f f e r , AG_SHA1_BLOCK_LENGTH) ;
17
18 /∗ Copy context−>sta t e [] to working vars ∗/
19 a = s t a t e [0] ;
20 b = s t a t e [1] ;
21 c = s t a t e [2] ;
22 d = s t a t e [3] ;
23 e = s t a t e [4] ;
24
25 /∗ 4 rounds o f 20 ope ra t i ons each . Loop unro l l ed . ∗/
26 R0(a , b , c , d , e , 0) ; R0(e , a , b , c , d , 1) ; R0(d , e , a , b , c , 2) ; R0(c , d , e , a , b , 3) ;
27 R0(b , c , d , e , a , 4) ; R0(a , b , c , d , e , 5) ; R0(e , a , b , c , d , 6) ; R0(d , e , a , b , c , 7) ;
28 R0(c , d , e , a , b , 8) ; R0(b , c , d , e , a , 9) ; R0(a , b , c , d , e , 1 0) ; R0(e , a , b , c , d , 1 1) ;
29 R0(d , e , a , b , c , 1 2) ; R0(c , d , e , a , b , 1 3) ; R0(b , c , d , e , a , 1 4) ; R0(a , b , c , d , e , 1 5) ;
30 R1(e , a , b , c , d , 1 6) ; R1(d , e , a , b , c , 1 7) ; R1(c , d , e , a , b , 1 8) ; R1(b , c , d , e , a , 1 9) ;
31 R2(a , b , c , d , e , 2 0) ; R2(e , a , b , c , d , 2 1) ; R2(d , e , a , b , c , 2 2) ; R2(c , d , e , a , b , 2 3) ;
32 R2(b , c , d , e , a , 2 4) ; R2(a , b , c , d , e , 2 5) ; R2(e , a , b , c , d , 2 6) ; R2(d , e , a , b , c , 2 7) ;
33 R2(c , d , e , a , b , 2 8) ; R2(b , c , d , e , a , 2 9) ; R2(a , b , c , d , e , 3 0) ; R2(e , a , b , c , d , 3 1) ;
34 R2(d , e , a , b , c , 3 2) ; R2(c , d , e , a , b , 3 3) ; R2(b , c , d , e , a , 3 4) ; R2(a , b , c , d , e , 3 5) ;
35 R2(e , a , b , c , d , 3 6) ; R2(d , e , a , b , c , 3 7) ; R2(c , d , e , a , b , 3 8) ; R2(b , c , d , e , a , 3 9) ;
36 R3(a , b , c , d , e , 4 0) ; R3(e , a , b , c , d , 4 1) ; R3(d , e , a , b , c , 4 2) ; R3(c , d , e , a , b , 4 3) ;
37 R3(b , c , d , e , a , 4 4) ; R3(a , b , c , d , e , 4 5) ; R3(e , a , b , c , d , 4 6) ; R3(d , e , a , b , c , 4 7) ;
38 R3(c , d , e , a , b , 4 8) ; R3(b , c , d , e , a , 4 9) ; R3(a , b , c , d , e , 5 0) ; R3(e , a , b , c , d , 5 1) ;
39 R3(d , e , a , b , c , 5 2) ; R3(c , d , e , a , b , 5 3) ; R3(b , c , d , e , a , 5 4) ; R3(a , b , c , d , e , 5 5) ;
40 R3(e , a , b , c , d , 5 6) ; R3(d , e , a , b , c , 5 7) ; R3(c , d , e , a , b , 5 8) ; R3(b , c , d , e , a , 5 9) ;
41 R4(a , b , c , d , e , 6 0) ; R4(e , a , b , c , d , 6 1) ; R4(d , e , a , b , c , 6 2) ; R4(c , d , e , a , b , 6 3) ;
42 R4(b , c , d , e , a , 6 4) ; R4(a , b , c , d , e , 6 5) ; R4(e , a , b , c , d , 6 6) ; R4(d , e , a , b , c , 6 7) ;
43 R4(c , d , e , a , b , 6 8) ; R4(b , c , d , e , a , 6 9) ; R4(a , b , c , d , e , 7 0) ; R4(e , a , b , c , d , 7 1) ;
44 R4(d , e , a , b , c , 7 2) ; R4(c , d , e , a , b , 7 3) ; R4(b , c , d , e , a , 7 4) ; R4(a , b , c , d , e , 7 5) ;
45 R4(e , a , b , c , d , 7 6) ; R4(d , e , a , b , c , 7 7) ; R4(c , d , e , a , b , 7 8) ; R4(b , c , d , e , a , 7 9) ;
46
47 /∗ Add the working vars back in to context . s t a t e [] ∗/
48 s t a t e [0] += a ;
49 s t a t e [1] += b ;
50 s t a t e [2] += c ;
51 s t a t e [3] += d ;
52 s t a t e [4] += e ;
53
54 /∗ Wipe va r i a b l e s ∗/
55 a = b = c = d = e = 0 ;
56 }

284

D.3 R code for hard to read files

r e qu i r e (’ robustbase ’)
dim_cols <− nco l (p r o j e c t)
dim_rows <− nrow (p r o j e c t)
outs_a l l <− data . frame (matrix (FALSE, nrow = dim_rows , nco l = 4))
colnames (outs_a l l) <− c ("Name" , "SLOC" , "Max" , "Box")
outs_all$Name <− project$Name
outs_all$SLOC <− project$SLOC
outs_max <− data . frame (matrix (FALSE, nrow = dim_rows , nco l = dim_cols))
colnames (outs_max) <− names (p r o j e c t)
outs_max$Name <− project$Name
outs_max$SLOC <− project$SLOC
outs_box <− data . frame (matrix (FALSE, nrow = dim_rows , nco l = dim_cols))
colnames (outs_box) <− names (p r o j e c t)
outs_box$Name <− project$Name
outs_box$SLOC <− project$SLOC
f o r (i in 3 : 6) {

s e u i l <− 0 .85 ∗ max(p r o j e c t [, i]) ;
outs_max [p r o j e c t [, i] >= s eu i l , i] <− TRUE;
myouts <− which (p r o j e c t [, i] %in% adjboxStats (p r o j e c t [, i]) $out) ;
outs_box [myouts , i] <− TRUE

}
f o r (i in 1 : nrow (outs_max)) {

nb <− 0 ;
f o r (j in 3 : 6) {

nb<−nb+(i f (outs_max [i , j]==TRUE) 1 e l s e 0) } ;
outs_max [i , c ("NB")] <− nb

}
max_max <− max(outs_max$NB)
outs_max$Result <− FALSE
outs_max [outs_max$NB > 0 , c (" Result ")] <− TRUE
outs_all$Max <− outs_max$Result
f o r (i in 1 : nrow (outs_box)) {

nb <− 0 ;
f o r (j in 3 : 6) {

nb<−nb+(i f (outs_box [i , j]==TRUE) 1 e l s e 0) } ;
outs_box [i , c ("NB")] <− nb

}
max_box <− max(outs_box$NB)
outs_box$Result <− FALSE
outs_box [outs_box$NB == max_box , c (" Result ")] <− TRUE
outs_all$Box <− outs_box$Result
f o r (i in 1 : nrow (outs_a l l)) {

outs_a l l [i , c ("ResultAND ")] <−
outs_max [i , c (" Result ")] &&
outs_box [i , c (" Result ")] ;

out s_a l l [i , c ("ResultOR ")] <−
outs_max [i , c (" Result ")] | |
outs_box [i , c (" Result ")] ;

285

}
outs <− outs_a l l [outs_all$SLOC > 10 & outs_all$ResultOR == TRUE, c ("Name")]
rm(i , j , outs_max , outs_box , outs_a l l)

286

Index

Squore, 87, 100, 101
Rules, 116

Boxplots, 54, 72, 139

Change management, 91, 95
Checkstyle, 100

Bugs, 88
Rules, 117

Clustering, 49, 75, 140, 157
Communication management, 91, 96

Metrics, 114
Configuration management, 91, 94

Metrics, 113
Retrieval, 102

Data sets
Ant, 120
Httpd, 121
JMeter, 122
Subversion, 122

Distribution function, 60

Eclipse Foundation, 127
Ecological fallacy, 29
Ecological inference, 29

Git, 95, 130
Using, 102, 103

Halstead, 23, 111, 130, 146
Hierarchical clustering, 50, 75, 157

ISO/IEC 9126, 27, 38, 115, 129

Jenkins, 103

K-means clustering, 50, 77, 157
Knitr documents, 90, 168, 259

Literate analysis, 70, 89

McCabe, 23, 78, 110, 149
Metrics

dopd, 111
dopt, 111
lc, 107
ncc, 112
nest, 110
npat, 110
rokr, 112
sloc, 107
topd, 111
topt, 111
vg, 110

Outliers, 53
Definition, 137
Detection, 72, 137

Pareto distribution, 61
PMD, 100

Bugs, 88
Rules, 118

Polarsys, 17, 128
Practices, 25, 94, 100, 115, 167
Principal Component Analysis, 47, 74, 176

Quality definitions, 31
Quality models, 34

Regression analysis, 56, 73, 78

Source code, 94
Metrics, 107
Retrieval, 102

Subversion, 95, 130
Using, 102, 103

287

Survival Analysis, 77

Time series, 58, 83
Applications, 158
Data sets for, 124

Total Quality Management, 33

Weibull distribution, 62

288

	Preface
	Introduction
	Context of the project
	Early history of Maisqual
	About INRIA Lille and SequeL
	About Squoring Technologies

	Project timeline
	Expected outputs
	Squore Labs
	Communication
	Publications

	About this document
	Summary

	I State of the art
	Software Engineering
	The art of building software
	Development processes
	Development practices

	Software measurement
	The art of measurement
	Technical debt

	Quality in software engineering
	A few words about quality
	Garvin's perspectives on quality
	Shewhart
	Crosby
	Feigenbaum
	Deming
	Juran

	Quality Models in Software Engineering
	A few words about quality models
	Product-oriented models
	Process-oriented models
	FLOSS models

	Summary

	Data mining
	Exploratory analysis
	Basic statistic tools
	Scatterplots

	Principal Component Analysis
	Clustering
	K-means clustering
	Hierarchical clustering
	dbscan clustering

	Outliers detection
	What is an outlier?
	Boxplot
	Local Outlier Factor
	Clustering-based techniques

	Regression analysis
	Time series
	Seasonal-trend decomposition
	Time series modeling
	Time series clustering
	Outliers detection in time series

	Distribution of measures
	The Pareto distribution
	The Weibull distribution

	Summary

	II The Maisqual project
	Foundations
	Understanding the problem
	Where to begin?
	About literate data analysis

	Version analysis
	Simple summary
	Distribution of variables
	Outliers detection
	Regression analysis
	Principal Component Analysis
	Clustering
	Survival analysis
	Specific concerns

	Evolution analysis
	Evolution of metrics
	Autocorrelation
	Moving average & loess
	Time series decomposition
	Time series forecasting
	Conditional execution & factoids

	Primary lessons
	Data quality and mining algorithms
	Volume of data
	About scientific software
	Check data

	Summary & Roadmap

	First stones: building the project
	Topology of a software project
	The big picture
	Artefact Types
	Source code
	Configuration management
	Change management
	Communication
	Publication

	An approach for data mining
	Declare the intent
	Identify quality attributes
	Identify available metrics
	Implementation
	Presentation of results

	Implementation
	Selected tools
	Data retrieval
	Data analysis
	Automation

	Summary

	Generating the data sets
	Defining metrics
	About metrics
	Code metrics
	Artefact counting metrics
	Line counting metrics
	Control flow complexity metrics
	Halstead metrics
	Rules-oriented measures
	Differential measures
	Object-oriented measures

	Software Configuration Management metrics
	Communication metrics

	Defining rules and practices
	About rules
	Squore
	Checkstyle
	PMD

	Projects
	Apache Ant
	Apache Httpd
	Apache JMeter
	Apache Subversion

	Summary

	III Squore Labs
	Working with the Eclipse foundation
	The Eclipse Foundation
	Declaration of intent
	Quality requirements
	Metrics identification
	From metrics to quality attributes
	Results
	Summary

	Outliers detection
	Requirements: what are we looking for?
	Statistical methods
	Simple tail-cutting
	Boxplots
	Clustering
	A note on metrics selection

	Implementation
	Knitr documents
	Integration in Squore
	R modular scripts

	Use cases
	Hard to read files and functions
	Untestable functions
	Code cloning in functions

	Summary

	Clustering
	Overview of existing techniques
	Automatic classification of artefacts
	Squore indicators
	Process description
	Application: the auto-calibration wizard

	Multi-dimensional quality assessment
	Summary & future work

	Correlating practices and attributes of software
	Nature of data
	Knitr investigations
	Results
	Summary & future work

	IV Conclusion
	Bibliography
	Appendices
	Appendix Papers and articles published
	Monitoring Software Projects with Squore
	Squore, une nouvelle approche pour la mesure de qualité logicielle
	De l'ombre à la lumière : plus de visibilité sur l'Eclipse (full version)
	De l'ombre à la lumière : plus de visibilité sur l'Eclipse (short version)
	De l'ombre à la lumière : plus de visibilité sur l'Eclipse (poster)
	Outliers in Software Engineering
	Mining Software Engineering Data
	Understanding software evolution: the Maisqual Ant data set

	Appendix Data sets
	Apache Ant
	Apache httpd
	Apache JMeter
	Apache Subversion
	Versions data sets

	Appendix Knitr documents
	Squore Lab Outliers
	Squore Lab Clustering
	Squore Lab Correlations

	Appendix Code samples
	Ant > Javadoc.java > execute()
	Agar > sha1.c > SHA1Transform()
	R code for hard to read files

	Index

